A novel checkpoint and RPA inhibitory pathway regulated by Rif1
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. Howeve...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2011-12, Vol.7 (12), p.e1002417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e1002417 |
container_title | PLoS genetics |
container_volume | 7 |
creator | Xue, Yuan Rushton, Michael D Maringele, Laura |
description | Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells. |
doi_str_mv | 10.1371/journal.pgen.1002417 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313501842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A276808745</galeid><doaj_id>oai_doaj_org_article_c9333588a5f741f699b895ee1ba12c9c</doaj_id><sourcerecordid>A276808745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c763t-d5574a920cef96b025bd84b5985cb9500ea281a3fa29b1dcdaa1b52a4ec3da03</originalsourceid><addsrcrecordid>eNqVkl1v0zAUhiMEYmPwDxBEQgJx0eLPJL4BVRMflSaGysStdeI4iYdrl9gZ9N_j0m5qJC5AvrB1_Lyv7eM3y55iNMe0xG-u_Tg4sPNNp90cI0QYLu9lp5hzOisZYveP1ifZoxCuEaK8EuXD7IQQLFiJ6Gn2bpE7f6Ntrnqtvm-8cTEH1-SrL4vcuN7UJvphm28g9j9hmw-6Gy1E3eT1Nl-ZFj_OHrRgg35ymM-yqw_vr84_zS4uPy7PFxczVRY0zhrOSwaCIKVbUdSI8LqpWM1FxVUtOEIaSIWBtkBEjRvVAOCaE2Ba0QYQPcue72031gd5eHqQmGLKEa4YScRyTzQeruVmMGsYttKDkX8KfugkDNEoq6USlKZOVMDbkuG2EKKuBNca14CJEip5vT2cNtZr3Sjt4gB2YjrdcaaXnb-RlDDERZEMXh0MBv9j1CHKtQlKWwtO-zFIgUnBcFFWiXyxJztINzOu9clQ7Wi5IGVRoapkPFHzv1BpNHptlHe6Nak-EbyeCBIT9a_YwRiCXH5d_Qf7-d_Zy29T9uUR22uwsQ_ejtF4F6Yg24Nq8CEMur3rNEZyl_XbD5e7rMtD1pPs2fEv3Yluw01_A2mZ9-0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912641678</pqid></control><display><type>article</type><title>A novel checkpoint and RPA inhibitory pathway regulated by Rif1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Xue, Yuan ; Rushton, Michael D ; Maringele, Laura</creator><contributor>Biggins, Sue</contributor><creatorcontrib>Xue, Yuan ; Rushton, Michael D ; Maringele, Laura ; Biggins, Sue</creatorcontrib><description>Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002417</identifier><identifier>PMID: 22194703</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromosomes - genetics ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - genetics ; DNA repair ; DNA Repair - genetics ; DNA replication ; DNA Replication - genetics ; DNA, Single-Stranded - genetics ; DNA, Single-Stranded - metabolism ; Gene Expression Regulation, Fungal ; Physiological aspects ; Proteins ; Replication Protein A - genetics ; Replication Protein A - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Shelterin Complex ; Telomere - genetics ; Telomere-Binding Proteins - genetics ; Telomere-Binding Proteins - metabolism ; Telomeres ; Transcription Factors - metabolism ; Yeast</subject><ispartof>PLoS genetics, 2011-12, Vol.7 (12), p.e1002417</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Xue et al. 2011</rights><rights>2011 Xue et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Xue Y, Rushton MD, Maringele L (2011) A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1. PLoS Genet 7(12): e1002417. doi:10.1371/journal.pgen.1002417</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c763t-d5574a920cef96b025bd84b5985cb9500ea281a3fa29b1dcdaa1b52a4ec3da03</citedby><cites>FETCH-LOGICAL-c763t-d5574a920cef96b025bd84b5985cb9500ea281a3fa29b1dcdaa1b52a4ec3da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Biggins, Sue</contributor><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Rushton, Michael D</creatorcontrib><creatorcontrib>Maringele, Laura</creatorcontrib><title>A novel checkpoint and RPA inhibitory pathway regulated by Rif1</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells.</description><subject>Biology</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomes - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA repair</subject><subject>DNA Repair - genetics</subject><subject>DNA replication</subject><subject>DNA Replication - genetics</subject><subject>DNA, Single-Stranded - genetics</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Replication Protein A - genetics</subject><subject>Replication Protein A - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Shelterin Complex</subject><subject>Telomere - genetics</subject><subject>Telomere-Binding Proteins - genetics</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1v0zAUhiMEYmPwDxBEQgJx0eLPJL4BVRMflSaGysStdeI4iYdrl9gZ9N_j0m5qJC5AvrB1_Lyv7eM3y55iNMe0xG-u_Tg4sPNNp90cI0QYLu9lp5hzOisZYveP1ifZoxCuEaK8EuXD7IQQLFiJ6Gn2bpE7f6Ntrnqtvm-8cTEH1-SrL4vcuN7UJvphm28g9j9hmw-6Gy1E3eT1Nl-ZFj_OHrRgg35ymM-yqw_vr84_zS4uPy7PFxczVRY0zhrOSwaCIKVbUdSI8LqpWM1FxVUtOEIaSIWBtkBEjRvVAOCaE2Ba0QYQPcue72031gd5eHqQmGLKEa4YScRyTzQeruVmMGsYttKDkX8KfugkDNEoq6USlKZOVMDbkuG2EKKuBNca14CJEip5vT2cNtZr3Sjt4gB2YjrdcaaXnb-RlDDERZEMXh0MBv9j1CHKtQlKWwtO-zFIgUnBcFFWiXyxJztINzOu9clQ7Wi5IGVRoapkPFHzv1BpNHptlHe6Nak-EbyeCBIT9a_YwRiCXH5d_Qf7-d_Zy29T9uUR22uwsQ_ejtF4F6Yg24Nq8CEMur3rNEZyl_XbD5e7rMtD1pPs2fEv3Yluw01_A2mZ9-0</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Xue, Yuan</creator><creator>Rushton, Michael D</creator><creator>Maringele, Laura</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111201</creationdate><title>A novel checkpoint and RPA inhibitory pathway regulated by Rif1</title><author>Xue, Yuan ; Rushton, Michael D ; Maringele, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c763t-d5574a920cef96b025bd84b5985cb9500ea281a3fa29b1dcdaa1b52a4ec3da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomes - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA repair</topic><topic>DNA Repair - genetics</topic><topic>DNA replication</topic><topic>DNA Replication - genetics</topic><topic>DNA, Single-Stranded - genetics</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Replication Protein A - genetics</topic><topic>Replication Protein A - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Shelterin Complex</topic><topic>Telomere - genetics</topic><topic>Telomere-Binding Proteins - genetics</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Rushton, Michael D</creatorcontrib><creatorcontrib>Maringele, Laura</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Yuan</au><au>Rushton, Michael D</au><au>Maringele, Laura</au><au>Biggins, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel checkpoint and RPA inhibitory pathway regulated by Rif1</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>7</volume><issue>12</issue><spage>e1002417</spage><pages>e1002417-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22194703</pmid><doi>10.1371/journal.pgen.1002417</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2011-12, Vol.7 (12), p.e1002417 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313501842 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biology Cell cycle Cell Cycle Checkpoints - genetics Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromosomes - genetics Deoxyribonucleic acid DNA DNA damage DNA Damage - genetics DNA repair DNA Repair - genetics DNA replication DNA Replication - genetics DNA, Single-Stranded - genetics DNA, Single-Stranded - metabolism Gene Expression Regulation, Fungal Physiological aspects Proteins Replication Protein A - genetics Replication Protein A - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Shelterin Complex Telomere - genetics Telomere-Binding Proteins - genetics Telomere-Binding Proteins - metabolism Telomeres Transcription Factors - metabolism Yeast |
title | A novel checkpoint and RPA inhibitory pathway regulated by Rif1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20checkpoint%20and%20RPA%20inhibitory%20pathway%20regulated%20by%20Rif1&rft.jtitle=PLoS%20genetics&rft.au=Xue,%20Yuan&rft.date=2011-12-01&rft.volume=7&rft.issue=12&rft.spage=e1002417&rft.pages=e1002417-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002417&rft_dat=%3Cgale_plos_%3EA276808745%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912641678&rft_id=info:pmid/22194703&rft_galeid=A276808745&rft_doaj_id=oai_doaj_org_article_c9333588a5f741f699b895ee1ba12c9c&rfr_iscdi=true |