The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae

Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2006-11, Vol.2 (11), p.e194
Hauptverfasser: Lettier, Gaëlle, Feng, Qi, de Mayolo, Adriana Antúnez, Erdeniz, Naz, Reid, Robert J D, Lisby, Michael, Mortensen, Uffe H, Rothstein, Rodney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e194
container_title PLoS genetics
container_volume 2
creator Lettier, Gaëlle
Feng, Qi
de Mayolo, Adriana Antúnez
Erdeniz, Naz
Reid, Robert J D
Lisby, Michael
Mortensen, Uffe H
Rothstein, Rodney
description Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.
doi_str_mv 10.1371/journal.pgen.0020194
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313480725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A162621328</galeid><doaj_id>oai_doaj_org_article_85685de2a1404d99a30f6b834301c1e2</doaj_id><sourcerecordid>A162621328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</originalsourceid><addsrcrecordid>eNqVk11vFCEUhidGY2v1HxidxKSJF7vCMAPDTZNN_dqkaRNbvTOEgTOzVAZWmGn038u4U-0aLzRcQOA574H3cLLsKUZLTBh-de3H4KRdbjtwS4QKhHl5LzvEVUUWrETl_ds14eggexTjNUKkqjl7mB1ghjitOD_MPl9tIA_eQu7b_PX5Ktd-bCws4hCk03kTQH6JuXF53Ho3SAd-jPnG9976bloGUL5vjJOD8W7iLpe5ggA3JhoJj7MHrbQRnszzUfbx7Zur0_eLs4t369PV2UIxzoaFQhQQb4EWsgEslWoZpawlqq54xWuiGo4KqioETDFNEGU1yLLVmHCtK6TJUfZ8p7u1PorZmSgwwaSsESuqRKx3hPbyWmyD6WX4Lrw04ueGD52QYTDKgqgrWlcaComTi5pzSVBLm5qUBGGFoUhaJ3O2selBK3DJLLsnun_izEZ0_kZgSlJFaBI4ngWC_zpCHERvogJrd_6KVMmyRKRO4Is_wL-_bbmjOpmub1zrU1aVhobeKO-gNWl_hWlBC0yKSfblXkBiBvg2dHKMUawvP_wHe_7v7MWnffb4DrsBaYdN9Hac_lHcB8sdqIKPMUD7y2iMxNQJt56IqRPE3Akp7NndIv0Omr8--QEgfQME</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313480725</pqid></control><display><type>article</type><title>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Lettier, Gaëlle ; Feng, Qi ; de Mayolo, Adriana Antúnez ; Erdeniz, Naz ; Reid, Robert J D ; Lisby, Michael ; Mortensen, Uffe H ; Rothstein, Rodney</creator><creatorcontrib>Lettier, Gaëlle ; Feng, Qi ; de Mayolo, Adriana Antúnez ; Erdeniz, Naz ; Reid, Robert J D ; Lisby, Michael ; Mortensen, Uffe H ; Rothstein, Rodney</creatorcontrib><description>Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.</description><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.0020194</identifier><identifier>PMID: 17096599</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Brewer's yeast ; Camptothecin - pharmacology ; Cancer Biology ; Causes of ; Cell Biology ; Chromosomes, Fungal - genetics ; Chromosomes, Fungal - radiation effects ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA repair ; DNA Repair - drug effects ; DNA Replication - drug effects ; DNA Topoisomerases - metabolism ; DNA, Fungal - metabolism ; DNA-Binding Proteins - metabolism ; Gamma Rays ; Genetic aspects ; Genetic recombination ; Genetic research ; Genetics ; Genetics/Chromosome Biology ; Genetics/Genetics of Disease ; Kinetics ; Meiosis ; Microbial Sensitivity Tests ; Mitosis - drug effects ; Mitosis - physiology ; Molecular Biology - Structural Biology ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Phenotype ; Protein Transport - drug effects ; Proteins ; Rad51 Recombinase - metabolism ; Rad52 DNA Repair and Recombination Protein - metabolism ; Recombination, Genetic - genetics ; Recombination, Genetic - radiation effects ; Saccharomyces ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - radiation effects ; Saccharomyces cerevisiae Proteins - metabolism ; Ultraviolet Rays ; Yeast ; Yeast fungi</subject><ispartof>PLoS genetics, 2006-11, Vol.2 (11), p.e194</ispartof><rights>COPYRIGHT 2006 Public Library of Science</rights><rights>2006 Lettier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lettier G, Feng Q, de Mayolo AA, Erdeniz N, Reid RJD, et al. (2006) The Role of DNA Double-Strand Breaks in Spontaneous Homologous Recombination in S. cerevisiae. PLoS Genet 2(11): e194. doi:10.1371/journal.pgen.0020194</rights><rights>2006 Lettier et al. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</citedby><cites>FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17096599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lettier, Gaëlle</creatorcontrib><creatorcontrib>Feng, Qi</creatorcontrib><creatorcontrib>de Mayolo, Adriana Antúnez</creatorcontrib><creatorcontrib>Erdeniz, Naz</creatorcontrib><creatorcontrib>Reid, Robert J D</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Mortensen, Uffe H</creatorcontrib><creatorcontrib>Rothstein, Rodney</creatorcontrib><title>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.</description><subject>Alleles</subject><subject>Brewer's yeast</subject><subject>Camptothecin - pharmacology</subject><subject>Cancer Biology</subject><subject>Causes of</subject><subject>Cell Biology</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Chromosomes, Fungal - radiation effects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA Topoisomerases - metabolism</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gamma Rays</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genetics/Chromosome Biology</subject><subject>Genetics/Genetics of Disease</subject><subject>Kinetics</subject><subject>Meiosis</subject><subject>Microbial Sensitivity Tests</subject><subject>Mitosis - drug effects</subject><subject>Mitosis - physiology</subject><subject>Molecular Biology - Structural Biology</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Protein Transport - drug effects</subject><subject>Proteins</subject><subject>Rad51 Recombinase - metabolism</subject><subject>Rad52 DNA Repair and Recombination Protein - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Recombination, Genetic - radiation effects</subject><subject>Saccharomyces</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><subject>Yeast fungi</subject><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11vFCEUhidGY2v1HxidxKSJF7vCMAPDTZNN_dqkaRNbvTOEgTOzVAZWmGn038u4U-0aLzRcQOA574H3cLLsKUZLTBh-de3H4KRdbjtwS4QKhHl5LzvEVUUWrETl_ds14eggexTjNUKkqjl7mB1ghjitOD_MPl9tIA_eQu7b_PX5Ktd-bCws4hCk03kTQH6JuXF53Ho3SAd-jPnG9976bloGUL5vjJOD8W7iLpe5ggA3JhoJj7MHrbQRnszzUfbx7Zur0_eLs4t369PV2UIxzoaFQhQQb4EWsgEslWoZpawlqq54xWuiGo4KqioETDFNEGU1yLLVmHCtK6TJUfZ8p7u1PorZmSgwwaSsESuqRKx3hPbyWmyD6WX4Lrw04ueGD52QYTDKgqgrWlcaComTi5pzSVBLm5qUBGGFoUhaJ3O2selBK3DJLLsnun_izEZ0_kZgSlJFaBI4ngWC_zpCHERvogJrd_6KVMmyRKRO4Is_wL-_bbmjOpmub1zrU1aVhobeKO-gNWl_hWlBC0yKSfblXkBiBvg2dHKMUawvP_wHe_7v7MWnffb4DrsBaYdN9Hac_lHcB8sdqIKPMUD7y2iMxNQJt56IqRPE3Akp7NndIv0Omr8--QEgfQME</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Lettier, Gaëlle</creator><creator>Feng, Qi</creator><creator>de Mayolo, Adriana Antúnez</creator><creator>Erdeniz, Naz</creator><creator>Reid, Robert J D</creator><creator>Lisby, Michael</creator><creator>Mortensen, Uffe H</creator><creator>Rothstein, Rodney</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>M7N</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20061101</creationdate><title>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</title><author>Lettier, Gaëlle ; Feng, Qi ; de Mayolo, Adriana Antúnez ; Erdeniz, Naz ; Reid, Robert J D ; Lisby, Michael ; Mortensen, Uffe H ; Rothstein, Rodney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alleles</topic><topic>Brewer's yeast</topic><topic>Camptothecin - pharmacology</topic><topic>Cancer Biology</topic><topic>Causes of</topic><topic>Cell Biology</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Chromosomes, Fungal - radiation effects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA Topoisomerases - metabolism</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gamma Rays</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genetics/Chromosome Biology</topic><topic>Genetics/Genetics of Disease</topic><topic>Kinetics</topic><topic>Meiosis</topic><topic>Microbial Sensitivity Tests</topic><topic>Mitosis - drug effects</topic><topic>Mitosis - physiology</topic><topic>Molecular Biology - Structural Biology</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Protein Transport - drug effects</topic><topic>Proteins</topic><topic>Rad51 Recombinase - metabolism</topic><topic>Rad52 DNA Repair and Recombination Protein - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Recombination, Genetic - radiation effects</topic><topic>Saccharomyces</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lettier, Gaëlle</creatorcontrib><creatorcontrib>Feng, Qi</creatorcontrib><creatorcontrib>de Mayolo, Adriana Antúnez</creatorcontrib><creatorcontrib>Erdeniz, Naz</creatorcontrib><creatorcontrib>Reid, Robert J D</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Mortensen, Uffe H</creatorcontrib><creatorcontrib>Rothstein, Rodney</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lettier, Gaëlle</au><au>Feng, Qi</au><au>de Mayolo, Adriana Antúnez</au><au>Erdeniz, Naz</au><au>Reid, Robert J D</au><au>Lisby, Michael</au><au>Mortensen, Uffe H</au><au>Rothstein, Rodney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>2</volume><issue>11</issue><spage>e194</spage><pages>e194-</pages><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17096599</pmid><doi>10.1371/journal.pgen.0020194</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7390
ispartof PLoS genetics, 2006-11, Vol.2 (11), p.e194
issn 1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313480725
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Alleles
Brewer's yeast
Camptothecin - pharmacology
Cancer Biology
Causes of
Cell Biology
Chromosomes, Fungal - genetics
Chromosomes, Fungal - radiation effects
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded
DNA repair
DNA Repair - drug effects
DNA Replication - drug effects
DNA Topoisomerases - metabolism
DNA, Fungal - metabolism
DNA-Binding Proteins - metabolism
Gamma Rays
Genetic aspects
Genetic recombination
Genetic research
Genetics
Genetics/Chromosome Biology
Genetics/Genetics of Disease
Kinetics
Meiosis
Microbial Sensitivity Tests
Mitosis - drug effects
Mitosis - physiology
Molecular Biology - Structural Biology
Mutant Proteins - metabolism
Mutation
Mutation - genetics
Phenotype
Protein Transport - drug effects
Proteins
Rad51 Recombinase - metabolism
Rad52 DNA Repair and Recombination Protein - metabolism
Recombination, Genetic - genetics
Recombination, Genetic - radiation effects
Saccharomyces
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - radiation effects
Saccharomyces cerevisiae Proteins - metabolism
Ultraviolet Rays
Yeast
Yeast fungi
title The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20DNA%20double-strand%20breaks%20in%20spontaneous%20homologous%20recombination%20in%20S.%20cerevisiae&rft.jtitle=PLoS%20genetics&rft.au=Lettier,%20Ga%C3%ABlle&rft.date=2006-11-01&rft.volume=2&rft.issue=11&rft.spage=e194&rft.pages=e194-&rft.issn=1553-7390&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.0020194&rft_dat=%3Cgale_plos_%3EA162621328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313480725&rft_id=info:pmid/17096599&rft_galeid=A162621328&rft_doaj_id=oai_doaj_org_article_85685de2a1404d99a30f6b834301c1e2&rfr_iscdi=true