The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae
Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meios...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2006-11, Vol.2 (11), p.e194 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e194 |
container_title | PLoS genetics |
container_volume | 2 |
creator | Lettier, Gaëlle Feng, Qi de Mayolo, Adriana Antúnez Erdeniz, Naz Reid, Robert J D Lisby, Michael Mortensen, Uffe H Rothstein, Rodney |
description | Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells. |
doi_str_mv | 10.1371/journal.pgen.0020194 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313480725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A162621328</galeid><doaj_id>oai_doaj_org_article_85685de2a1404d99a30f6b834301c1e2</doaj_id><sourcerecordid>A162621328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</originalsourceid><addsrcrecordid>eNqVk11vFCEUhidGY2v1HxidxKSJF7vCMAPDTZNN_dqkaRNbvTOEgTOzVAZWmGn038u4U-0aLzRcQOA574H3cLLsKUZLTBh-de3H4KRdbjtwS4QKhHl5LzvEVUUWrETl_ds14eggexTjNUKkqjl7mB1ghjitOD_MPl9tIA_eQu7b_PX5Ktd-bCws4hCk03kTQH6JuXF53Ho3SAd-jPnG9976bloGUL5vjJOD8W7iLpe5ggA3JhoJj7MHrbQRnszzUfbx7Zur0_eLs4t369PV2UIxzoaFQhQQb4EWsgEslWoZpawlqq54xWuiGo4KqioETDFNEGU1yLLVmHCtK6TJUfZ8p7u1PorZmSgwwaSsESuqRKx3hPbyWmyD6WX4Lrw04ueGD52QYTDKgqgrWlcaComTi5pzSVBLm5qUBGGFoUhaJ3O2selBK3DJLLsnun_izEZ0_kZgSlJFaBI4ngWC_zpCHERvogJrd_6KVMmyRKRO4Is_wL-_bbmjOpmub1zrU1aVhobeKO-gNWl_hWlBC0yKSfblXkBiBvg2dHKMUawvP_wHe_7v7MWnffb4DrsBaYdN9Hac_lHcB8sdqIKPMUD7y2iMxNQJt56IqRPE3Akp7NndIv0Omr8--QEgfQME</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313480725</pqid></control><display><type>article</type><title>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Lettier, Gaëlle ; Feng, Qi ; de Mayolo, Adriana Antúnez ; Erdeniz, Naz ; Reid, Robert J D ; Lisby, Michael ; Mortensen, Uffe H ; Rothstein, Rodney</creator><creatorcontrib>Lettier, Gaëlle ; Feng, Qi ; de Mayolo, Adriana Antúnez ; Erdeniz, Naz ; Reid, Robert J D ; Lisby, Michael ; Mortensen, Uffe H ; Rothstein, Rodney</creatorcontrib><description>Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.</description><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.0020194</identifier><identifier>PMID: 17096599</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Brewer's yeast ; Camptothecin - pharmacology ; Cancer Biology ; Causes of ; Cell Biology ; Chromosomes, Fungal - genetics ; Chromosomes, Fungal - radiation effects ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA repair ; DNA Repair - drug effects ; DNA Replication - drug effects ; DNA Topoisomerases - metabolism ; DNA, Fungal - metabolism ; DNA-Binding Proteins - metabolism ; Gamma Rays ; Genetic aspects ; Genetic recombination ; Genetic research ; Genetics ; Genetics/Chromosome Biology ; Genetics/Genetics of Disease ; Kinetics ; Meiosis ; Microbial Sensitivity Tests ; Mitosis - drug effects ; Mitosis - physiology ; Molecular Biology - Structural Biology ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Phenotype ; Protein Transport - drug effects ; Proteins ; Rad51 Recombinase - metabolism ; Rad52 DNA Repair and Recombination Protein - metabolism ; Recombination, Genetic - genetics ; Recombination, Genetic - radiation effects ; Saccharomyces ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - radiation effects ; Saccharomyces cerevisiae Proteins - metabolism ; Ultraviolet Rays ; Yeast ; Yeast fungi</subject><ispartof>PLoS genetics, 2006-11, Vol.2 (11), p.e194</ispartof><rights>COPYRIGHT 2006 Public Library of Science</rights><rights>2006 Lettier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lettier G, Feng Q, de Mayolo AA, Erdeniz N, Reid RJD, et al. (2006) The Role of DNA Double-Strand Breaks in Spontaneous Homologous Recombination in S. cerevisiae. PLoS Genet 2(11): e194. doi:10.1371/journal.pgen.0020194</rights><rights>2006 Lettier et al. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</citedby><cites>FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635536/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635536/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17096599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lettier, Gaëlle</creatorcontrib><creatorcontrib>Feng, Qi</creatorcontrib><creatorcontrib>de Mayolo, Adriana Antúnez</creatorcontrib><creatorcontrib>Erdeniz, Naz</creatorcontrib><creatorcontrib>Reid, Robert J D</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Mortensen, Uffe H</creatorcontrib><creatorcontrib>Rothstein, Rodney</creatorcontrib><title>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.</description><subject>Alleles</subject><subject>Brewer's yeast</subject><subject>Camptothecin - pharmacology</subject><subject>Cancer Biology</subject><subject>Causes of</subject><subject>Cell Biology</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Chromosomes, Fungal - radiation effects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA repair</subject><subject>DNA Repair - drug effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA Topoisomerases - metabolism</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gamma Rays</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genetics/Chromosome Biology</subject><subject>Genetics/Genetics of Disease</subject><subject>Kinetics</subject><subject>Meiosis</subject><subject>Microbial Sensitivity Tests</subject><subject>Mitosis - drug effects</subject><subject>Mitosis - physiology</subject><subject>Molecular Biology - Structural Biology</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Protein Transport - drug effects</subject><subject>Proteins</subject><subject>Rad51 Recombinase - metabolism</subject><subject>Rad52 DNA Repair and Recombination Protein - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Recombination, Genetic - radiation effects</subject><subject>Saccharomyces</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - radiation effects</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><subject>Yeast fungi</subject><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11vFCEUhidGY2v1HxidxKSJF7vCMAPDTZNN_dqkaRNbvTOEgTOzVAZWmGn038u4U-0aLzRcQOA574H3cLLsKUZLTBh-de3H4KRdbjtwS4QKhHl5LzvEVUUWrETl_ds14eggexTjNUKkqjl7mB1ghjitOD_MPl9tIA_eQu7b_PX5Ktd-bCws4hCk03kTQH6JuXF53Ho3SAd-jPnG9976bloGUL5vjJOD8W7iLpe5ggA3JhoJj7MHrbQRnszzUfbx7Zur0_eLs4t369PV2UIxzoaFQhQQb4EWsgEslWoZpawlqq54xWuiGo4KqioETDFNEGU1yLLVmHCtK6TJUfZ8p7u1PorZmSgwwaSsESuqRKx3hPbyWmyD6WX4Lrw04ueGD52QYTDKgqgrWlcaComTi5pzSVBLm5qUBGGFoUhaJ3O2selBK3DJLLsnun_izEZ0_kZgSlJFaBI4ngWC_zpCHERvogJrd_6KVMmyRKRO4Is_wL-_bbmjOpmub1zrU1aVhobeKO-gNWl_hWlBC0yKSfblXkBiBvg2dHKMUawvP_wHe_7v7MWnffb4DrsBaYdN9Hac_lHcB8sdqIKPMUD7y2iMxNQJt56IqRPE3Akp7NndIv0Omr8--QEgfQME</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Lettier, Gaëlle</creator><creator>Feng, Qi</creator><creator>de Mayolo, Adriana Antúnez</creator><creator>Erdeniz, Naz</creator><creator>Reid, Robert J D</creator><creator>Lisby, Michael</creator><creator>Mortensen, Uffe H</creator><creator>Rothstein, Rodney</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>M7N</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20061101</creationdate><title>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</title><author>Lettier, Gaëlle ; Feng, Qi ; de Mayolo, Adriana Antúnez ; Erdeniz, Naz ; Reid, Robert J D ; Lisby, Michael ; Mortensen, Uffe H ; Rothstein, Rodney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c797t-c06e09fe62abe1accf7667f3c8595983cb9026c50e7c7d30678ea4fd139dd50d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alleles</topic><topic>Brewer's yeast</topic><topic>Camptothecin - pharmacology</topic><topic>Cancer Biology</topic><topic>Causes of</topic><topic>Cell Biology</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Chromosomes, Fungal - radiation effects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA repair</topic><topic>DNA Repair - drug effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA Topoisomerases - metabolism</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gamma Rays</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genetics/Chromosome Biology</topic><topic>Genetics/Genetics of Disease</topic><topic>Kinetics</topic><topic>Meiosis</topic><topic>Microbial Sensitivity Tests</topic><topic>Mitosis - drug effects</topic><topic>Mitosis - physiology</topic><topic>Molecular Biology - Structural Biology</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Protein Transport - drug effects</topic><topic>Proteins</topic><topic>Rad51 Recombinase - metabolism</topic><topic>Rad52 DNA Repair and Recombination Protein - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Recombination, Genetic - radiation effects</topic><topic>Saccharomyces</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - radiation effects</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lettier, Gaëlle</creatorcontrib><creatorcontrib>Feng, Qi</creatorcontrib><creatorcontrib>de Mayolo, Adriana Antúnez</creatorcontrib><creatorcontrib>Erdeniz, Naz</creatorcontrib><creatorcontrib>Reid, Robert J D</creatorcontrib><creatorcontrib>Lisby, Michael</creatorcontrib><creatorcontrib>Mortensen, Uffe H</creatorcontrib><creatorcontrib>Rothstein, Rodney</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lettier, Gaëlle</au><au>Feng, Qi</au><au>de Mayolo, Adriana Antúnez</au><au>Erdeniz, Naz</au><au>Reid, Robert J D</au><au>Lisby, Michael</au><au>Mortensen, Uffe H</au><au>Rothstein, Rodney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>2</volume><issue>11</issue><spage>e194</spage><pages>e194-</pages><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses, evaluation of the consequences of DSB repair failure at the DNA level, and examination of the cellular re-localization of Rad51 and mutant Rad52 proteins after introduction of specific DSBs. In further support of our conclusions, we show that, as in wild-type strains, UV-irradiation induces HR in these rad52 mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17096599</pmid><doi>10.1371/journal.pgen.0020194</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7390 |
ispartof | PLoS genetics, 2006-11, Vol.2 (11), p.e194 |
issn | 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313480725 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Alleles Brewer's yeast Camptothecin - pharmacology Cancer Biology Causes of Cell Biology Chromosomes, Fungal - genetics Chromosomes, Fungal - radiation effects Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA repair DNA Repair - drug effects DNA Replication - drug effects DNA Topoisomerases - metabolism DNA, Fungal - metabolism DNA-Binding Proteins - metabolism Gamma Rays Genetic aspects Genetic recombination Genetic research Genetics Genetics/Chromosome Biology Genetics/Genetics of Disease Kinetics Meiosis Microbial Sensitivity Tests Mitosis - drug effects Mitosis - physiology Molecular Biology - Structural Biology Mutant Proteins - metabolism Mutation Mutation - genetics Phenotype Protein Transport - drug effects Proteins Rad51 Recombinase - metabolism Rad52 DNA Repair and Recombination Protein - metabolism Recombination, Genetic - genetics Recombination, Genetic - radiation effects Saccharomyces Saccharomyces cerevisiae Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - radiation effects Saccharomyces cerevisiae Proteins - metabolism Ultraviolet Rays Yeast Yeast fungi |
title | The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20DNA%20double-strand%20breaks%20in%20spontaneous%20homologous%20recombination%20in%20S.%20cerevisiae&rft.jtitle=PLoS%20genetics&rft.au=Lettier,%20Ga%C3%ABlle&rft.date=2006-11-01&rft.volume=2&rft.issue=11&rft.spage=e194&rft.pages=e194-&rft.issn=1553-7390&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.0020194&rft_dat=%3Cgale_plos_%3EA162621328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313480725&rft_id=info:pmid/17096599&rft_galeid=A162621328&rft_doaj_id=oai_doaj_org_article_85685de2a1404d99a30f6b834301c1e2&rfr_iscdi=true |