Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History

Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2007-07, Vol.3 (7), p.1254-1263
Hauptverfasser: Wei, F, Nelson, W, Bharti, A.K, Engler, F, Butler, E, Kim, H.R, Goicoechea, J.L, Chen, M, Lee, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 7
container_start_page 1254
container_title PLoS genetics
container_volume 3
creator Wei, F
Nelson, W
Bharti, A.K
Engler, F
Butler, E
Kim, H.R
Goicoechea, J.L
Chen, M
Lee, S
description Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.
doi_str_mv 10.1371/journal.pgen.0030123
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313480656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A167586760</galeid><doaj_id>oai_doaj_org_article_e993a76d5f9b4764ab2b5460c41ca3d1</doaj_id><sourcerecordid>A167586760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c821t-b75a57eb0fb0aae298d21f3dff1d4c53ba948655065543421391c9fd0aa119363</originalsourceid><addsrcrecordid>eNqVk-9r1DAYx4sobk7_A9GCMPDFnUmTNu0bYRxzO5hOds5XQkjTJ70caXMm6dj868151d2JoBJCQvL5Pnl-5EmS5xhNMWH4zcoOrhdmum6hnyJEEM7Ig-QQ5zmZMIrow539QfLE-1WE8rJij5MDzIq4y-lh8uXj8s5rKUwq-iY9gx6ClukiuEGGwUFqVRqWkL4X-htsrm0H6RUoAzL4dB7nzHZrA7fp6Y01Q9C2F-4uPdc-WHf3NHmkhPHwbFyPkut3p59m55OLy7P57ORiIssMh0nNcpEzqJGqkRCQVWWTYUUapXBDZU5qUdGyyHMUJyU0w6TCslJNhDGuSEGOkpdbu2tjPR8T4zkmmNAyqjbEfEs0Vqz42ukuusmt0PzHgXUtFy5GboBDVRHBiiZXVU1ZQUWd1TktkKRYCtLgaOvt-NpQd9BI6IMTZs_o_k2vl7y1Nzz6SklVRgPHowFnvw7gA--0l2CM6MEOnrNYSlpGN_4GUkazCleb8F79Bv45CdMt1YoYp-6Vje7JOBrotLQ9KB3PT3DB8rJgBYqC13uCyAS4Da0YvOfzxdV_sB_-nb38vM8e77BLECYs_fjV_D5It6B01nsH6ldFMOKbjvmZE77pGD52TJS92K3mvWhskfvPpYTlonXa8-tFhjBBqEQYZ4x8B-b-GUE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313480656</pqid></control><display><type>article</type><title>Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wei, F ; Nelson, W ; Bharti, A.K ; Engler, F ; Butler, E ; Kim, H.R ; Goicoechea, J.L ; Chen, M ; Lee, S</creator><creatorcontrib>Wei, F ; Nelson, W ; Bharti, A.K ; Engler, F ; Butler, E ; Kim, H.R ; Goicoechea, J.L ; Chen, M ; Lee, S</creatorcontrib><description>Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.0030123</identifier><identifier>PMID: 17658954</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Chromosome Mapping ; Chromosomes, Artificial, Bacterial - genetics ; Chromosomes, Plant - genetics ; Cloning ; Corn ; DNA Fingerprinting ; DNA, Plant - genetics ; Edible Grain - genetics ; Editing ; Eukaryotes ; Evolution ; Evolution, Molecular ; expressed sequence tags ; Gene Duplication ; Gene Rearrangement ; Genetic aspects ; genetic recombination ; Genetics ; Genetics and Genomics ; genome ; Genome, Plant ; Genomes ; Genomics ; grain crops ; Natural history ; Oryza - genetics ; Phylogeny ; physical chromosome mapping ; Physiological aspects ; plant genetics ; Plants ; sequence analysis ; Species Specificity ; Studies ; Zea ; Zea mays ; Zea mays - genetics</subject><ispartof>PLoS genetics, 2007-07, Vol.3 (7), p.1254-1263</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Wei F, Coe E, Nelson W, Bharti AK, Engler F, et al. (2007) Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History. PLoS Genet 3(7): e123. doi:10.1371/journal.pgen.0030123</rights><rights>2007 2007</rights><rights>2007 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Wei F, Coe E, Nelson W, Bharti AK, Engler F, et al. (2007) Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History. PLoS Genet 3(7): e123. doi:10.1371/journal.pgen.0030123</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c821t-b75a57eb0fb0aae298d21f3dff1d4c53ba948655065543421391c9fd0aa119363</citedby><cites>FETCH-LOGICAL-c821t-b75a57eb0fb0aae298d21f3dff1d4c53ba948655065543421391c9fd0aa119363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17658954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, F</creatorcontrib><creatorcontrib>Nelson, W</creatorcontrib><creatorcontrib>Bharti, A.K</creatorcontrib><creatorcontrib>Engler, F</creatorcontrib><creatorcontrib>Butler, E</creatorcontrib><creatorcontrib>Kim, H.R</creatorcontrib><creatorcontrib>Goicoechea, J.L</creatorcontrib><creatorcontrib>Chen, M</creatorcontrib><creatorcontrib>Lee, S</creatorcontrib><title>Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.</description><subject>Chromosome Mapping</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Cloning</subject><subject>Corn</subject><subject>DNA Fingerprinting</subject><subject>DNA, Plant - genetics</subject><subject>Edible Grain - genetics</subject><subject>Editing</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>expressed sequence tags</subject><subject>Gene Duplication</subject><subject>Gene Rearrangement</subject><subject>Genetic aspects</subject><subject>genetic recombination</subject><subject>Genetics</subject><subject>Genetics and Genomics</subject><subject>genome</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>grain crops</subject><subject>Natural history</subject><subject>Oryza - genetics</subject><subject>Phylogeny</subject><subject>physical chromosome mapping</subject><subject>Physiological aspects</subject><subject>plant genetics</subject><subject>Plants</subject><subject>sequence analysis</subject><subject>Species Specificity</subject><subject>Studies</subject><subject>Zea</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk-9r1DAYx4sobk7_A9GCMPDFnUmTNu0bYRxzO5hOds5XQkjTJ70caXMm6dj868151d2JoBJCQvL5Pnl-5EmS5xhNMWH4zcoOrhdmum6hnyJEEM7Ig-QQ5zmZMIrow539QfLE-1WE8rJij5MDzIq4y-lh8uXj8s5rKUwq-iY9gx6ClukiuEGGwUFqVRqWkL4X-htsrm0H6RUoAzL4dB7nzHZrA7fp6Y01Q9C2F-4uPdc-WHf3NHmkhPHwbFyPkut3p59m55OLy7P57ORiIssMh0nNcpEzqJGqkRCQVWWTYUUapXBDZU5qUdGyyHMUJyU0w6TCslJNhDGuSEGOkpdbu2tjPR8T4zkmmNAyqjbEfEs0Vqz42ukuusmt0PzHgXUtFy5GboBDVRHBiiZXVU1ZQUWd1TktkKRYCtLgaOvt-NpQd9BI6IMTZs_o_k2vl7y1Nzz6SklVRgPHowFnvw7gA--0l2CM6MEOnrNYSlpGN_4GUkazCleb8F79Bv45CdMt1YoYp-6Vje7JOBrotLQ9KB3PT3DB8rJgBYqC13uCyAS4Da0YvOfzxdV_sB_-nb38vM8e77BLECYs_fjV_D5It6B01nsH6ldFMOKbjvmZE77pGD52TJS92K3mvWhskfvPpYTlonXa8-tFhjBBqEQYZ4x8B-b-GUE</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Wei, F</creator><creator>Nelson, W</creator><creator>Bharti, A.K</creator><creator>Engler, F</creator><creator>Butler, E</creator><creator>Kim, H.R</creator><creator>Goicoechea, J.L</creator><creator>Chen, M</creator><creator>Lee, S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20070701</creationdate><title>Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History</title><author>Wei, F ; Nelson, W ; Bharti, A.K ; Engler, F ; Butler, E ; Kim, H.R ; Goicoechea, J.L ; Chen, M ; Lee, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c821t-b75a57eb0fb0aae298d21f3dff1d4c53ba948655065543421391c9fd0aa119363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chromosome Mapping</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Cloning</topic><topic>Corn</topic><topic>DNA Fingerprinting</topic><topic>DNA, Plant - genetics</topic><topic>Edible Grain - genetics</topic><topic>Editing</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>expressed sequence tags</topic><topic>Gene Duplication</topic><topic>Gene Rearrangement</topic><topic>Genetic aspects</topic><topic>genetic recombination</topic><topic>Genetics</topic><topic>Genetics and Genomics</topic><topic>genome</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>grain crops</topic><topic>Natural history</topic><topic>Oryza - genetics</topic><topic>Phylogeny</topic><topic>physical chromosome mapping</topic><topic>Physiological aspects</topic><topic>plant genetics</topic><topic>Plants</topic><topic>sequence analysis</topic><topic>Species Specificity</topic><topic>Studies</topic><topic>Zea</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, F</creatorcontrib><creatorcontrib>Nelson, W</creatorcontrib><creatorcontrib>Bharti, A.K</creatorcontrib><creatorcontrib>Engler, F</creatorcontrib><creatorcontrib>Butler, E</creatorcontrib><creatorcontrib>Kim, H.R</creatorcontrib><creatorcontrib>Goicoechea, J.L</creatorcontrib><creatorcontrib>Chen, M</creatorcontrib><creatorcontrib>Lee, S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, F</au><au>Nelson, W</au><au>Bharti, A.K</au><au>Engler, F</au><au>Butler, E</au><au>Kim, H.R</au><au>Goicoechea, J.L</au><au>Chen, M</au><au>Lee, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>3</volume><issue>7</issue><spage>1254</spage><epage>1263</epage><pages>1254-1263</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17658954</pmid><doi>10.1371/journal.pgen.0030123</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2007-07, Vol.3 (7), p.1254-1263
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313480656
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chromosome Mapping
Chromosomes, Artificial, Bacterial - genetics
Chromosomes, Plant - genetics
Cloning
Corn
DNA Fingerprinting
DNA, Plant - genetics
Edible Grain - genetics
Editing
Eukaryotes
Evolution
Evolution, Molecular
expressed sequence tags
Gene Duplication
Gene Rearrangement
Genetic aspects
genetic recombination
Genetics
Genetics and Genomics
genome
Genome, Plant
Genomes
Genomics
grain crops
Natural history
Oryza - genetics
Phylogeny
physical chromosome mapping
Physiological aspects
plant genetics
Plants
sequence analysis
Species Specificity
Studies
Zea
Zea mays
Zea mays - genetics
title Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20Genetic%20Structure%20of%20the%20Maize%20Genome%20Reflects%20Its%20Complex%20Evolutionary%20History&rft.jtitle=PLoS%20genetics&rft.au=Wei,%20F&rft.date=2007-07-01&rft.volume=3&rft.issue=7&rft.spage=1254&rft.epage=1263&rft.pages=1254-1263&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.0030123&rft_dat=%3Cgale_plos_%3EA167586760%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313480656&rft_id=info:pmid/17658954&rft_galeid=A167586760&rft_doaj_id=oai_doaj_org_article_e993a76d5f9b4764ab2b5460c41ca3d1&rfr_iscdi=true