Smart swarms of bacteria-inspired agents with performance adaptable interactions

Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2011-09, Vol.7 (9), p.e1002177-e1002177
Hauptverfasser: Shklarsh, Adi, Ariel, Gil, Schneidman, Elad, Ben-Jacob, Eshel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002177
container_issue 9
container_start_page e1002177
container_title PLoS computational biology
container_volume 7
creator Shklarsh, Adi
Ariel, Gil
Schneidman, Elad
Ben-Jacob, Eshel
description Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
doi_str_mv 10.1371/journal.pcbi.1002177
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313186510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A269432867</galeid><doaj_id>oai_doaj_org_article_1064d0ba628f49119d520d738a355f99</doaj_id><sourcerecordid>A269432867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</originalsourceid><addsrcrecordid>eNqVUsFu1DAQjRCIlsIfIMit4pDFjhM7viBVFZSVKkAUztbEGW-9SuJgZyn8PdNuWnWPaA4ejd97nnmeLHvN2YoLxd9vwy6O0K8m2_oVZ6zkSj3Jjnldi0KJunn6KD_KXqS0ZYxSLZ9nRyXXDStVdZx9uxogznm6gTikPLi8BTtj9FD4MU0-YpfDBsc55Td-vs4njC7EAUaLOXQwzdD2mPuRKMTzYUwvs2cO-oSvlvMk-_np44_zz8Xl14v1-dllYSWr5kKqprV11VknGCrUElFo2dJgogKuKGeNblulOFaVZChQlxqEY8wpZhmIk-ztXnfqQzKLGclwQdHImjNCrPeILsDWTNHTpH9NAG_uCiFuDI3ubY-GM1l1rAVZNq7SnOuuLlmnRAOirp3WpPVheW3XDthZciRCfyB6eDP6a7MJvw01UzZSkcDpIhDDrx2m2Qw-Wex7GDHskqF_aQTnNSfkao_cAHXmRxdI0FJ0OHgbRnSe6mel1JVYpN8dEAgz4595A7uUzPrq-39gvxxiqz3WxpBSRPcwLmfmdgXvXTe3K2iWFSTam8dWPZDud078A6JZ2Dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896831151</pqid></control><display><type>article</type><title>Smart swarms of bacteria-inspired agents with performance adaptable interactions</title><source>MEDLINE</source><source>Public Library of Science</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Shklarsh, Adi ; Ariel, Gil ; Schneidman, Elad ; Ben-Jacob, Eshel</creator><creatorcontrib>Shklarsh, Adi ; Ariel, Gil ; Schneidman, Elad ; Ben-Jacob, Eshel</creatorcontrib><description>Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002177</identifier><identifier>PMID: 21980274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Physiological ; Animal behavior ; Bacteria ; Bacterial Physiological Phenomena ; Behavior ; Biology ; Computational Biology ; Computer Science ; Computer Simulation ; Microbial Interactions - physiology ; Models, Biological ; Noise ; Physiological aspects ; Studies</subject><ispartof>PLoS computational biology, 2011-09, Vol.7 (9), p.e1002177-e1002177</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Shklarsh et al. 2011</rights><rights>2011 Shklarsh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shklarsh A, Ariel G, Schneidman E, Ben-Jacob E (2011) Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions. PLoS Comput Biol 7(9): e1002177. doi:10.1371/journal.pcbi.1002177</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</citedby><cites>FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21980274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shklarsh, Adi</creatorcontrib><creatorcontrib>Ariel, Gil</creatorcontrib><creatorcontrib>Schneidman, Elad</creatorcontrib><creatorcontrib>Ben-Jacob, Eshel</creatorcontrib><title>Smart swarms of bacteria-inspired agents with performance adaptable interactions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.</description><subject>Adaptation, Physiological</subject><subject>Animal behavior</subject><subject>Bacteria</subject><subject>Bacterial Physiological Phenomena</subject><subject>Behavior</subject><subject>Biology</subject><subject>Computational Biology</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Microbial Interactions - physiology</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Physiological aspects</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUsFu1DAQjRCIlsIfIMit4pDFjhM7viBVFZSVKkAUztbEGW-9SuJgZyn8PdNuWnWPaA4ejd97nnmeLHvN2YoLxd9vwy6O0K8m2_oVZ6zkSj3Jjnldi0KJunn6KD_KXqS0ZYxSLZ9nRyXXDStVdZx9uxogznm6gTikPLi8BTtj9FD4MU0-YpfDBsc55Td-vs4njC7EAUaLOXQwzdD2mPuRKMTzYUwvs2cO-oSvlvMk-_np44_zz8Xl14v1-dllYSWr5kKqprV11VknGCrUElFo2dJgogKuKGeNblulOFaVZChQlxqEY8wpZhmIk-ztXnfqQzKLGclwQdHImjNCrPeILsDWTNHTpH9NAG_uCiFuDI3ubY-GM1l1rAVZNq7SnOuuLlmnRAOirp3WpPVheW3XDthZciRCfyB6eDP6a7MJvw01UzZSkcDpIhDDrx2m2Qw-Wex7GDHskqF_aQTnNSfkao_cAHXmRxdI0FJ0OHgbRnSe6mel1JVYpN8dEAgz4595A7uUzPrq-39gvxxiqz3WxpBSRPcwLmfmdgXvXTe3K2iWFSTam8dWPZDud078A6JZ2Dw</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Shklarsh, Adi</creator><creator>Ariel, Gil</creator><creator>Schneidman, Elad</creator><creator>Ben-Jacob, Eshel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110901</creationdate><title>Smart swarms of bacteria-inspired agents with performance adaptable interactions</title><author>Shklarsh, Adi ; Ariel, Gil ; Schneidman, Elad ; Ben-Jacob, Eshel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation, Physiological</topic><topic>Animal behavior</topic><topic>Bacteria</topic><topic>Bacterial Physiological Phenomena</topic><topic>Behavior</topic><topic>Biology</topic><topic>Computational Biology</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Microbial Interactions - physiology</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Physiological aspects</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shklarsh, Adi</creatorcontrib><creatorcontrib>Ariel, Gil</creatorcontrib><creatorcontrib>Schneidman, Elad</creatorcontrib><creatorcontrib>Ben-Jacob, Eshel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shklarsh, Adi</au><au>Ariel, Gil</au><au>Schneidman, Elad</au><au>Ben-Jacob, Eshel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart swarms of bacteria-inspired agents with performance adaptable interactions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>7</volume><issue>9</issue><spage>e1002177</spage><epage>e1002177</epage><pages>e1002177-e1002177</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21980274</pmid><doi>10.1371/journal.pcbi.1002177</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-09, Vol.7 (9), p.e1002177-e1002177
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313186510
source MEDLINE; Public Library of Science; PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library
subjects Adaptation, Physiological
Animal behavior
Bacteria
Bacterial Physiological Phenomena
Behavior
Biology
Computational Biology
Computer Science
Computer Simulation
Microbial Interactions - physiology
Models, Biological
Noise
Physiological aspects
Studies
title Smart swarms of bacteria-inspired agents with performance adaptable interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20swarms%20of%20bacteria-inspired%20agents%20with%20performance%20adaptable%20interactions&rft.jtitle=PLoS%20computational%20biology&rft.au=Shklarsh,%20Adi&rft.date=2011-09-01&rft.volume=7&rft.issue=9&rft.spage=e1002177&rft.epage=e1002177&rft.pages=e1002177-e1002177&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002177&rft_dat=%3Cgale_plos_%3EA269432867%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896831151&rft_id=info:pmid/21980274&rft_galeid=A269432867&rft_doaj_id=oai_doaj_org_article_1064d0ba628f49119d520d738a355f99&rfr_iscdi=true