Smart swarms of bacteria-inspired agents with performance adaptable interactions
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, inte...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2011-09, Vol.7 (9), p.e1002177-e1002177 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002177 |
---|---|
container_issue | 9 |
container_start_page | e1002177 |
container_title | PLoS computational biology |
container_volume | 7 |
creator | Shklarsh, Adi Ariel, Gil Schneidman, Elad Ben-Jacob, Eshel |
description | Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. |
doi_str_mv | 10.1371/journal.pcbi.1002177 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313186510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A269432867</galeid><doaj_id>oai_doaj_org_article_1064d0ba628f49119d520d738a355f99</doaj_id><sourcerecordid>A269432867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</originalsourceid><addsrcrecordid>eNqVUsFu1DAQjRCIlsIfIMit4pDFjhM7viBVFZSVKkAUztbEGW-9SuJgZyn8PdNuWnWPaA4ejd97nnmeLHvN2YoLxd9vwy6O0K8m2_oVZ6zkSj3Jjnldi0KJunn6KD_KXqS0ZYxSLZ9nRyXXDStVdZx9uxogznm6gTikPLi8BTtj9FD4MU0-YpfDBsc55Td-vs4njC7EAUaLOXQwzdD2mPuRKMTzYUwvs2cO-oSvlvMk-_np44_zz8Xl14v1-dllYSWr5kKqprV11VknGCrUElFo2dJgogKuKGeNblulOFaVZChQlxqEY8wpZhmIk-ztXnfqQzKLGclwQdHImjNCrPeILsDWTNHTpH9NAG_uCiFuDI3ubY-GM1l1rAVZNq7SnOuuLlmnRAOirp3WpPVheW3XDthZciRCfyB6eDP6a7MJvw01UzZSkcDpIhDDrx2m2Qw-Wex7GDHskqF_aQTnNSfkao_cAHXmRxdI0FJ0OHgbRnSe6mel1JVYpN8dEAgz4595A7uUzPrq-39gvxxiqz3WxpBSRPcwLmfmdgXvXTe3K2iWFSTam8dWPZDud078A6JZ2Dw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896831151</pqid></control><display><type>article</type><title>Smart swarms of bacteria-inspired agents with performance adaptable interactions</title><source>MEDLINE</source><source>Public Library of Science</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Shklarsh, Adi ; Ariel, Gil ; Schneidman, Elad ; Ben-Jacob, Eshel</creator><creatorcontrib>Shklarsh, Adi ; Ariel, Gil ; Schneidman, Elad ; Ben-Jacob, Eshel</creatorcontrib><description>Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002177</identifier><identifier>PMID: 21980274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Physiological ; Animal behavior ; Bacteria ; Bacterial Physiological Phenomena ; Behavior ; Biology ; Computational Biology ; Computer Science ; Computer Simulation ; Microbial Interactions - physiology ; Models, Biological ; Noise ; Physiological aspects ; Studies</subject><ispartof>PLoS computational biology, 2011-09, Vol.7 (9), p.e1002177-e1002177</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Shklarsh et al. 2011</rights><rights>2011 Shklarsh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shklarsh A, Ariel G, Schneidman E, Ben-Jacob E (2011) Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions. PLoS Comput Biol 7(9): e1002177. doi:10.1371/journal.pcbi.1002177</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</citedby><cites>FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21980274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shklarsh, Adi</creatorcontrib><creatorcontrib>Ariel, Gil</creatorcontrib><creatorcontrib>Schneidman, Elad</creatorcontrib><creatorcontrib>Ben-Jacob, Eshel</creatorcontrib><title>Smart swarms of bacteria-inspired agents with performance adaptable interactions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.</description><subject>Adaptation, Physiological</subject><subject>Animal behavior</subject><subject>Bacteria</subject><subject>Bacterial Physiological Phenomena</subject><subject>Behavior</subject><subject>Biology</subject><subject>Computational Biology</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Microbial Interactions - physiology</subject><subject>Models, Biological</subject><subject>Noise</subject><subject>Physiological aspects</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUsFu1DAQjRCIlsIfIMit4pDFjhM7viBVFZSVKkAUztbEGW-9SuJgZyn8PdNuWnWPaA4ejd97nnmeLHvN2YoLxd9vwy6O0K8m2_oVZ6zkSj3Jjnldi0KJunn6KD_KXqS0ZYxSLZ9nRyXXDStVdZx9uxogznm6gTikPLi8BTtj9FD4MU0-YpfDBsc55Td-vs4njC7EAUaLOXQwzdD2mPuRKMTzYUwvs2cO-oSvlvMk-_np44_zz8Xl14v1-dllYSWr5kKqprV11VknGCrUElFo2dJgogKuKGeNblulOFaVZChQlxqEY8wpZhmIk-ztXnfqQzKLGclwQdHImjNCrPeILsDWTNHTpH9NAG_uCiFuDI3ubY-GM1l1rAVZNq7SnOuuLlmnRAOirp3WpPVheW3XDthZciRCfyB6eDP6a7MJvw01UzZSkcDpIhDDrx2m2Qw-Wex7GDHskqF_aQTnNSfkao_cAHXmRxdI0FJ0OHgbRnSe6mel1JVYpN8dEAgz4595A7uUzPrq-39gvxxiqz3WxpBSRPcwLmfmdgXvXTe3K2iWFSTam8dWPZDud078A6JZ2Dw</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Shklarsh, Adi</creator><creator>Ariel, Gil</creator><creator>Schneidman, Elad</creator><creator>Ben-Jacob, Eshel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110901</creationdate><title>Smart swarms of bacteria-inspired agents with performance adaptable interactions</title><author>Shklarsh, Adi ; Ariel, Gil ; Schneidman, Elad ; Ben-Jacob, Eshel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-678bc54dcf30e7e96ee396b37134a17396089bb771e4460e3e929a3f00f70c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation, Physiological</topic><topic>Animal behavior</topic><topic>Bacteria</topic><topic>Bacterial Physiological Phenomena</topic><topic>Behavior</topic><topic>Biology</topic><topic>Computational Biology</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Microbial Interactions - physiology</topic><topic>Models, Biological</topic><topic>Noise</topic><topic>Physiological aspects</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shklarsh, Adi</creatorcontrib><creatorcontrib>Ariel, Gil</creatorcontrib><creatorcontrib>Schneidman, Elad</creatorcontrib><creatorcontrib>Ben-Jacob, Eshel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shklarsh, Adi</au><au>Ariel, Gil</au><au>Schneidman, Elad</au><au>Ben-Jacob, Eshel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart swarms of bacteria-inspired agents with performance adaptable interactions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>7</volume><issue>9</issue><spage>e1002177</spage><epage>e1002177</epage><pages>e1002177-e1002177</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21980274</pmid><doi>10.1371/journal.pcbi.1002177</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2011-09, Vol.7 (9), p.e1002177-e1002177 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313186510 |
source | MEDLINE; Public Library of Science; PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Adaptation, Physiological Animal behavior Bacteria Bacterial Physiological Phenomena Behavior Biology Computational Biology Computer Science Computer Simulation Microbial Interactions - physiology Models, Biological Noise Physiological aspects Studies |
title | Smart swarms of bacteria-inspired agents with performance adaptable interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20swarms%20of%20bacteria-inspired%20agents%20with%20performance%20adaptable%20interactions&rft.jtitle=PLoS%20computational%20biology&rft.au=Shklarsh,%20Adi&rft.date=2011-09-01&rft.volume=7&rft.issue=9&rft.spage=e1002177&rft.epage=e1002177&rft.pages=e1002177-e1002177&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002177&rft_dat=%3Cgale_plos_%3EA269432867%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896831151&rft_id=info:pmid/21980274&rft_galeid=A269432867&rft_doaj_id=oai_doaj_org_article_1064d0ba628f49119d520d738a355f99&rfr_iscdi=true |