Modelling cell polarization driven by synthetic spatially graded Rac activation

The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2012-06, Vol.8 (6), p.e1002366-e1002366
Hauptverfasser: Holmes, William R, Lin, Benjamin, Levchenko, Andre, Edelstein-Keshet, Leah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002366
container_issue 6
container_start_page e1002366
container_title PLoS computational biology
container_volume 8
creator Holmes, William R
Lin, Benjamin
Levchenko, Andre
Edelstein-Keshet, Leah
description The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.
doi_str_mv 10.1371/journal.pcbi.1002366
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313186002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A295777143</galeid><doaj_id>oai_doaj_org_article_1e15aa0df4e445cdb60880771f96f804</doaj_id><sourcerecordid>A295777143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</originalsourceid><addsrcrecordid>eNqVkktvEzEUhUcIREvgHyAYiQ0sEvy2Z4NUVTwiFSoVWFt3bM_U0WQc7ElE-PV4mmnVoG6QF7auv3Pse3SL4iVGC0wlfr8K29hDt9iY2i8wQoQK8ag4xZzTuaRcPb53PimepbRCKB8r8bQ4IURSiXh1Wlx-DdZ1ne_b0uS93IQOov8Dgw99aaPfub6s92Xa98O1G7wp0ybfQdftyzaCdba8AlOCGfzuRvO8eNJAl9yLaZ8VPz99_HH-ZX5x-Xl5fnYxN0LgYQ7cMMmJrA0HB2CJccAZAdZgJRoGgtQOUVVVUlpWKWikgioXhQAqHaF0Vrw--G66kPSURdKY5qXEmMasWB4IG2ClN9GvIe51AK9vCiG2GmLuqHMaO8wBkG2YY4wbWwukFJISN5VoFGLZ68P02rZeO2tcP0TojkyPb3p_rduw05QqpESVDd5OBjH82ro06LVPY-DQu7DN_0aEcK6owhl98w_6cHcT1UJuwPdNyO-a0VSfkYrL_Hk2prR4gMrLurU3oXeNz_UjwbsjQWYG93toYZuSXn6_-g_22zHLDqyJIaXomrvsMNLjON82qcdx1tM4Z9mr-7nfiW7nl_4FdOnwNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313186002</pqid></control><display><type>article</type><title>Modelling cell polarization driven by synthetic spatially graded Rac activation</title><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Holmes, William R ; Lin, Benjamin ; Levchenko, Andre ; Edelstein-Keshet, Leah</creator><contributor>Shvartsman, Stanislav</contributor><creatorcontrib>Holmes, William R ; Lin, Benjamin ; Levchenko, Andre ; Edelstein-Keshet, Leah ; Shvartsman, Stanislav</creatorcontrib><description>The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002366</identifier><identifier>PMID: 22737059</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; cdc42 GTP-Binding Protein - metabolism ; Cell Membrane - metabolism ; Cell Polarity - physiology ; Cell proliferation ; Cell Shape - physiology ; Computational Biology ; Computer Simulation ; Cytoskeleton ; Cytosol - metabolism ; Enzyme Activation ; Experiments ; Feedback, Physiological ; Grants ; Guanosine triphosphatase ; HeLa Cells ; Humans ; Mathematical models ; Mathematics ; Models, Biological ; Motility ; Ordinary differential equations ; Partial differential equations ; Phosphatidylinositols - metabolism ; Physiological aspects ; Proteins ; rac GTP-Binding Proteins - metabolism ; Receptor Cross-Talk ; rho GTP-Binding Proteins - metabolism</subject><ispartof>PLoS computational biology, 2012-06, Vol.8 (6), p.e1002366-e1002366</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Holmes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Holmes WR, Lin B, Levchenko A, Edelstein-Keshet L (2012) Modelling Cell Polarization Driven by Synthetic Spatially Graded Rac Activation. PLoS Comput Biol 8(6): e1002366. doi:10.1371/journal.pcbi.1002366</rights><rights>Holmes et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</citedby><cites>FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22737059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shvartsman, Stanislav</contributor><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Lin, Benjamin</creatorcontrib><creatorcontrib>Levchenko, Andre</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><title>Modelling cell polarization driven by synthetic spatially graded Rac activation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.</description><subject>Biology</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Polarity - physiology</subject><subject>Cell proliferation</subject><subject>Cell Shape - physiology</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Cytoskeleton</subject><subject>Cytosol - metabolism</subject><subject>Enzyme Activation</subject><subject>Experiments</subject><subject>Feedback, Physiological</subject><subject>Grants</subject><subject>Guanosine triphosphatase</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Motility</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>Receptor Cross-Talk</subject><subject>rho GTP-Binding Proteins - metabolism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktvEzEUhUcIREvgHyAYiQ0sEvy2Z4NUVTwiFSoVWFt3bM_U0WQc7ElE-PV4mmnVoG6QF7auv3Pse3SL4iVGC0wlfr8K29hDt9iY2i8wQoQK8ag4xZzTuaRcPb53PimepbRCKB8r8bQ4IURSiXh1Wlx-DdZ1ne_b0uS93IQOov8Dgw99aaPfub6s92Xa98O1G7wp0ybfQdftyzaCdba8AlOCGfzuRvO8eNJAl9yLaZ8VPz99_HH-ZX5x-Xl5fnYxN0LgYQ7cMMmJrA0HB2CJccAZAdZgJRoGgtQOUVVVUlpWKWikgioXhQAqHaF0Vrw--G66kPSURdKY5qXEmMasWB4IG2ClN9GvIe51AK9vCiG2GmLuqHMaO8wBkG2YY4wbWwukFJISN5VoFGLZ68P02rZeO2tcP0TojkyPb3p_rduw05QqpESVDd5OBjH82ro06LVPY-DQu7DN_0aEcK6owhl98w_6cHcT1UJuwPdNyO-a0VSfkYrL_Hk2prR4gMrLurU3oXeNz_UjwbsjQWYG93toYZuSXn6_-g_22zHLDqyJIaXomrvsMNLjON82qcdx1tM4Z9mr-7nfiW7nl_4FdOnwNg</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Holmes, William R</creator><creator>Lin, Benjamin</creator><creator>Levchenko, Andre</creator><creator>Edelstein-Keshet, Leah</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>Modelling cell polarization driven by synthetic spatially graded Rac activation</title><author>Holmes, William R ; Lin, Benjamin ; Levchenko, Andre ; Edelstein-Keshet, Leah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Polarity - physiology</topic><topic>Cell proliferation</topic><topic>Cell Shape - physiology</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Cytoskeleton</topic><topic>Cytosol - metabolism</topic><topic>Enzyme Activation</topic><topic>Experiments</topic><topic>Feedback, Physiological</topic><topic>Grants</topic><topic>Guanosine triphosphatase</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Motility</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>Receptor Cross-Talk</topic><topic>rho GTP-Binding Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Lin, Benjamin</creatorcontrib><creatorcontrib>Levchenko, Andre</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, William R</au><au>Lin, Benjamin</au><au>Levchenko, Andre</au><au>Edelstein-Keshet, Leah</au><au>Shvartsman, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling cell polarization driven by synthetic spatially graded Rac activation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>8</volume><issue>6</issue><spage>e1002366</spage><epage>e1002366</epage><pages>e1002366-e1002366</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22737059</pmid><doi>10.1371/journal.pcbi.1002366</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2012-06, Vol.8 (6), p.e1002366-e1002366
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313186002
source PLoS; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
subjects Biology
cdc42 GTP-Binding Protein - metabolism
Cell Membrane - metabolism
Cell Polarity - physiology
Cell proliferation
Cell Shape - physiology
Computational Biology
Computer Simulation
Cytoskeleton
Cytosol - metabolism
Enzyme Activation
Experiments
Feedback, Physiological
Grants
Guanosine triphosphatase
HeLa Cells
Humans
Mathematical models
Mathematics
Models, Biological
Motility
Ordinary differential equations
Partial differential equations
Phosphatidylinositols - metabolism
Physiological aspects
Proteins
rac GTP-Binding Proteins - metabolism
Receptor Cross-Talk
rho GTP-Binding Proteins - metabolism
title Modelling cell polarization driven by synthetic spatially graded Rac activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20cell%20polarization%20driven%20by%20synthetic%20spatially%20graded%20Rac%20activation&rft.jtitle=PLoS%20computational%20biology&rft.au=Holmes,%20William%20R&rft.date=2012-06-01&rft.volume=8&rft.issue=6&rft.spage=e1002366&rft.epage=e1002366&rft.pages=e1002366-e1002366&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002366&rft_dat=%3Cgale_plos_%3EA295777143%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313186002&rft_id=info:pmid/22737059&rft_galeid=A295777143&rft_doaj_id=oai_doaj_org_article_1e15aa0df4e445cdb60880771f96f804&rfr_iscdi=true