Modelling cell polarization driven by synthetic spatially graded Rac activation
The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to syn...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2012-06, Vol.8 (6), p.e1002366-e1002366 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002366 |
---|---|
container_issue | 6 |
container_start_page | e1002366 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | Holmes, William R Lin, Benjamin Levchenko, Andre Edelstein-Keshet, Leah |
description | The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization. |
doi_str_mv | 10.1371/journal.pcbi.1002366 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313186002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A295777143</galeid><doaj_id>oai_doaj_org_article_1e15aa0df4e445cdb60880771f96f804</doaj_id><sourcerecordid>A295777143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</originalsourceid><addsrcrecordid>eNqVkktvEzEUhUcIREvgHyAYiQ0sEvy2Z4NUVTwiFSoVWFt3bM_U0WQc7ElE-PV4mmnVoG6QF7auv3Pse3SL4iVGC0wlfr8K29hDt9iY2i8wQoQK8ag4xZzTuaRcPb53PimepbRCKB8r8bQ4IURSiXh1Wlx-DdZ1ne_b0uS93IQOov8Dgw99aaPfub6s92Xa98O1G7wp0ybfQdftyzaCdba8AlOCGfzuRvO8eNJAl9yLaZ8VPz99_HH-ZX5x-Xl5fnYxN0LgYQ7cMMmJrA0HB2CJccAZAdZgJRoGgtQOUVVVUlpWKWikgioXhQAqHaF0Vrw--G66kPSURdKY5qXEmMasWB4IG2ClN9GvIe51AK9vCiG2GmLuqHMaO8wBkG2YY4wbWwukFJISN5VoFGLZ68P02rZeO2tcP0TojkyPb3p_rduw05QqpESVDd5OBjH82ro06LVPY-DQu7DN_0aEcK6owhl98w_6cHcT1UJuwPdNyO-a0VSfkYrL_Hk2prR4gMrLurU3oXeNz_UjwbsjQWYG93toYZuSXn6_-g_22zHLDqyJIaXomrvsMNLjON82qcdx1tM4Z9mr-7nfiW7nl_4FdOnwNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313186002</pqid></control><display><type>article</type><title>Modelling cell polarization driven by synthetic spatially graded Rac activation</title><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Holmes, William R ; Lin, Benjamin ; Levchenko, Andre ; Edelstein-Keshet, Leah</creator><contributor>Shvartsman, Stanislav</contributor><creatorcontrib>Holmes, William R ; Lin, Benjamin ; Levchenko, Andre ; Edelstein-Keshet, Leah ; Shvartsman, Stanislav</creatorcontrib><description>The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002366</identifier><identifier>PMID: 22737059</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; cdc42 GTP-Binding Protein - metabolism ; Cell Membrane - metabolism ; Cell Polarity - physiology ; Cell proliferation ; Cell Shape - physiology ; Computational Biology ; Computer Simulation ; Cytoskeleton ; Cytosol - metabolism ; Enzyme Activation ; Experiments ; Feedback, Physiological ; Grants ; Guanosine triphosphatase ; HeLa Cells ; Humans ; Mathematical models ; Mathematics ; Models, Biological ; Motility ; Ordinary differential equations ; Partial differential equations ; Phosphatidylinositols - metabolism ; Physiological aspects ; Proteins ; rac GTP-Binding Proteins - metabolism ; Receptor Cross-Talk ; rho GTP-Binding Proteins - metabolism</subject><ispartof>PLoS computational biology, 2012-06, Vol.8 (6), p.e1002366-e1002366</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Holmes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Holmes WR, Lin B, Levchenko A, Edelstein-Keshet L (2012) Modelling Cell Polarization Driven by Synthetic Spatially Graded Rac Activation. PLoS Comput Biol 8(6): e1002366. doi:10.1371/journal.pcbi.1002366</rights><rights>Holmes et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</citedby><cites>FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22737059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shvartsman, Stanislav</contributor><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Lin, Benjamin</creatorcontrib><creatorcontrib>Levchenko, Andre</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><title>Modelling cell polarization driven by synthetic spatially graded Rac activation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.</description><subject>Biology</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Polarity - physiology</subject><subject>Cell proliferation</subject><subject>Cell Shape - physiology</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Cytoskeleton</subject><subject>Cytosol - metabolism</subject><subject>Enzyme Activation</subject><subject>Experiments</subject><subject>Feedback, Physiological</subject><subject>Grants</subject><subject>Guanosine triphosphatase</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Motility</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>rac GTP-Binding Proteins - metabolism</subject><subject>Receptor Cross-Talk</subject><subject>rho GTP-Binding Proteins - metabolism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktvEzEUhUcIREvgHyAYiQ0sEvy2Z4NUVTwiFSoVWFt3bM_U0WQc7ElE-PV4mmnVoG6QF7auv3Pse3SL4iVGC0wlfr8K29hDt9iY2i8wQoQK8ag4xZzTuaRcPb53PimepbRCKB8r8bQ4IURSiXh1Wlx-DdZ1ne_b0uS93IQOov8Dgw99aaPfub6s92Xa98O1G7wp0ybfQdftyzaCdba8AlOCGfzuRvO8eNJAl9yLaZ8VPz99_HH-ZX5x-Xl5fnYxN0LgYQ7cMMmJrA0HB2CJccAZAdZgJRoGgtQOUVVVUlpWKWikgioXhQAqHaF0Vrw--G66kPSURdKY5qXEmMasWB4IG2ClN9GvIe51AK9vCiG2GmLuqHMaO8wBkG2YY4wbWwukFJISN5VoFGLZ68P02rZeO2tcP0TojkyPb3p_rduw05QqpESVDd5OBjH82ro06LVPY-DQu7DN_0aEcK6owhl98w_6cHcT1UJuwPdNyO-a0VSfkYrL_Hk2prR4gMrLurU3oXeNz_UjwbsjQWYG93toYZuSXn6_-g_22zHLDqyJIaXomrvsMNLjON82qcdx1tM4Z9mr-7nfiW7nl_4FdOnwNg</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Holmes, William R</creator><creator>Lin, Benjamin</creator><creator>Levchenko, Andre</creator><creator>Edelstein-Keshet, Leah</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>Modelling cell polarization driven by synthetic spatially graded Rac activation</title><author>Holmes, William R ; Lin, Benjamin ; Levchenko, Andre ; Edelstein-Keshet, Leah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-a5c47527bc5aeaad2cea542a4f186f4a62be0389977d498af78a962b66a37e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Polarity - physiology</topic><topic>Cell proliferation</topic><topic>Cell Shape - physiology</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Cytoskeleton</topic><topic>Cytosol - metabolism</topic><topic>Enzyme Activation</topic><topic>Experiments</topic><topic>Feedback, Physiological</topic><topic>Grants</topic><topic>Guanosine triphosphatase</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Motility</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>rac GTP-Binding Proteins - metabolism</topic><topic>Receptor Cross-Talk</topic><topic>rho GTP-Binding Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, William R</creatorcontrib><creatorcontrib>Lin, Benjamin</creatorcontrib><creatorcontrib>Levchenko, Andre</creatorcontrib><creatorcontrib>Edelstein-Keshet, Leah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, William R</au><au>Lin, Benjamin</au><au>Levchenko, Andre</au><au>Edelstein-Keshet, Leah</au><au>Shvartsman, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling cell polarization driven by synthetic spatially graded Rac activation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>8</volume><issue>6</issue><spage>e1002366</spage><epage>e1002366</epage><pages>e1002366-e1002366</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22737059</pmid><doi>10.1371/journal.pcbi.1002366</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012-06, Vol.8 (6), p.e1002366-e1002366 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313186002 |
source | PLoS; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Biology cdc42 GTP-Binding Protein - metabolism Cell Membrane - metabolism Cell Polarity - physiology Cell proliferation Cell Shape - physiology Computational Biology Computer Simulation Cytoskeleton Cytosol - metabolism Enzyme Activation Experiments Feedback, Physiological Grants Guanosine triphosphatase HeLa Cells Humans Mathematical models Mathematics Models, Biological Motility Ordinary differential equations Partial differential equations Phosphatidylinositols - metabolism Physiological aspects Proteins rac GTP-Binding Proteins - metabolism Receptor Cross-Talk rho GTP-Binding Proteins - metabolism |
title | Modelling cell polarization driven by synthetic spatially graded Rac activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20cell%20polarization%20driven%20by%20synthetic%20spatially%20graded%20Rac%20activation&rft.jtitle=PLoS%20computational%20biology&rft.au=Holmes,%20William%20R&rft.date=2012-06-01&rft.volume=8&rft.issue=6&rft.spage=e1002366&rft.epage=e1002366&rft.pages=e1002366-e1002366&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002366&rft_dat=%3Cgale_plos_%3EA295777143%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313186002&rft_id=info:pmid/22737059&rft_galeid=A295777143&rft_doaj_id=oai_doaj_org_article_1e15aa0df4e445cdb60880771f96f804&rfr_iscdi=true |