From dynamic expression patterns to boundary formation in the presomitic mesoderm
The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somit...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2012-06, Vol.8 (6), p.e1002586 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e1002586 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | Tiedemann, Hendrik B Schneltzer, Elida Zeiser, Stefan Hoesel, Bastian Beckers, Johannes Przemeck, Gerhard K H de Angelis, Martin Hrabě |
description | The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice. |
doi_str_mv | 10.1371/journal.pcbi.1002586 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A295777198</galeid><doaj_id>oai_doaj_org_article_2c7780ab01944a75814338a099e70ae1</doaj_id><sourcerecordid>A295777198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-bed54892bb2f21605e9f382cda4bf7cd42371a2108e8ddf8f81e53d7269dea13</originalsourceid><addsrcrecordid>eNqVUktv1DAQjhCIlsI_QBCJE4dd_IhfF6SqorBSBQJ6t5x4svUqsRfbQe2_x2HTqnvggObg0cz3ffPwVNVrjNaYCvxhF6bozbDed61bY4QIk_xJdYoZoytBmXz6yD-pXqS0Q6i4ij-vTggRHDPOT6vvlzGMtb3zZnRdDbf7CCm54Ou9yRmiT3UOdRsmb028q_sQR5PntPN1voF6hofR5cIdi2chji-rZ70ZErxa3rPq-vLT9cWX1dW3z5uL86tVx5XKqxYsa6QibUt6gjlioHoqSWdN0_aisw0pQxqCkQRpbS97iYFRKwhXFgymZ9Xbg-x-CEkvy0ga02KSKcULYnNA2GB2eh_dWEbQwTj9NxDiVptYOh9Ak04IiUyLsGoaI5jEDaXSIKVAIANztY9LtakdwXbgczTDkehxxrsbvQ2_dZHhWKIi8G4RiOHXBCn_o-X1AbU1pSvn-1DEumIWyvcED70r8XOimBACK1kI748IBZPhNm_NlJLe_PzxH9ivx9jmgO1iSClC_zAqRno-v_v29Xx-ejm_QnvzeE0PpPt7o38AVRrX0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185996</pqid></control><display><type>article</type><title>From dynamic expression patterns to boundary formation in the presomitic mesoderm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tiedemann, Hendrik B ; Schneltzer, Elida ; Zeiser, Stefan ; Hoesel, Bastian ; Beckers, Johannes ; Przemeck, Gerhard K H ; de Angelis, Martin Hrabě</creator><contributor>Lubensky, David K.</contributor><creatorcontrib>Tiedemann, Hendrik B ; Schneltzer, Elida ; Zeiser, Stefan ; Hoesel, Bastian ; Beckers, Johannes ; Przemeck, Gerhard K H ; de Angelis, Martin Hrabě ; Lubensky, David K.</creatorcontrib><description>The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002586</identifier><identifier>PMID: 22761566</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological Clocks - genetics ; Biological Clocks - physiology ; Biology ; Body Patterning - genetics ; Body Patterning - physiology ; Computational Biology ; Computer Simulation ; Embryonic development ; Feedback, Physiological ; Fibroblast Growth Factor 8 - genetics ; Fibroblast Growth Factor 8 - metabolism ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genetic aspects ; Genetics ; Mesoderm - embryology ; Mesoderm - metabolism ; Mice ; Models, Biological ; Physiological aspects ; Proteins ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Signal Transduction ; Simulation ; Somites - embryology ; Somites - metabolism ; Wnt3A Protein - genetics ; Wnt3A Protein - metabolism</subject><ispartof>PLoS computational biology, 2012-06, Vol.8 (6), p.e1002586</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Tiedemann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tiedemann HB, Schneltzer E, Zeiser S, Hoesel B, Beckers J, et al. (2012) From Dynamic Expression Patterns to Boundary Formation in the Presomitic Mesoderm. PLoS Comput Biol 8(6): e1002586. doi:10.1371/journal.pcbi.1002586</rights><rights>Tiedemann et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-bed54892bb2f21605e9f382cda4bf7cd42371a2108e8ddf8f81e53d7269dea13</citedby><cites>FETCH-LOGICAL-c699t-bed54892bb2f21605e9f382cda4bf7cd42371a2108e8ddf8f81e53d7269dea13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22761566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lubensky, David K.</contributor><creatorcontrib>Tiedemann, Hendrik B</creatorcontrib><creatorcontrib>Schneltzer, Elida</creatorcontrib><creatorcontrib>Zeiser, Stefan</creatorcontrib><creatorcontrib>Hoesel, Bastian</creatorcontrib><creatorcontrib>Beckers, Johannes</creatorcontrib><creatorcontrib>Przemeck, Gerhard K H</creatorcontrib><creatorcontrib>de Angelis, Martin Hrabě</creatorcontrib><title>From dynamic expression patterns to boundary formation in the presomitic mesoderm</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.</description><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological Clocks - genetics</subject><subject>Biological Clocks - physiology</subject><subject>Biology</subject><subject>Body Patterning - genetics</subject><subject>Body Patterning - physiology</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Embryonic development</subject><subject>Feedback, Physiological</subject><subject>Fibroblast Growth Factor 8 - genetics</subject><subject>Fibroblast Growth Factor 8 - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Mesoderm - embryology</subject><subject>Mesoderm - metabolism</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction</subject><subject>Simulation</subject><subject>Somites - embryology</subject><subject>Somites - metabolism</subject><subject>Wnt3A Protein - genetics</subject><subject>Wnt3A Protein - metabolism</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUktv1DAQjhCIlsI_QBCJE4dd_IhfF6SqorBSBQJ6t5x4svUqsRfbQe2_x2HTqnvggObg0cz3ffPwVNVrjNaYCvxhF6bozbDed61bY4QIk_xJdYoZoytBmXz6yD-pXqS0Q6i4ij-vTggRHDPOT6vvlzGMtb3zZnRdDbf7CCm54Ou9yRmiT3UOdRsmb028q_sQR5PntPN1voF6hofR5cIdi2chji-rZ70ZErxa3rPq-vLT9cWX1dW3z5uL86tVx5XKqxYsa6QibUt6gjlioHoqSWdN0_aisw0pQxqCkQRpbS97iYFRKwhXFgymZ9Xbg-x-CEkvy0ga02KSKcULYnNA2GB2eh_dWEbQwTj9NxDiVptYOh9Ak04IiUyLsGoaI5jEDaXSIKVAIANztY9LtakdwXbgczTDkehxxrsbvQ2_dZHhWKIi8G4RiOHXBCn_o-X1AbU1pSvn-1DEumIWyvcED70r8XOimBACK1kI748IBZPhNm_NlJLe_PzxH9ivx9jmgO1iSClC_zAqRno-v_v29Xx-ejm_QnvzeE0PpPt7o38AVRrX0w</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Tiedemann, Hendrik B</creator><creator>Schneltzer, Elida</creator><creator>Zeiser, Stefan</creator><creator>Hoesel, Bastian</creator><creator>Beckers, Johannes</creator><creator>Przemeck, Gerhard K H</creator><creator>de Angelis, Martin Hrabě</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>From dynamic expression patterns to boundary formation in the presomitic mesoderm</title><author>Tiedemann, Hendrik B ; Schneltzer, Elida ; Zeiser, Stefan ; Hoesel, Bastian ; Beckers, Johannes ; Przemeck, Gerhard K H ; de Angelis, Martin Hrabě</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-bed54892bb2f21605e9f382cda4bf7cd42371a2108e8ddf8f81e53d7269dea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological Clocks - genetics</topic><topic>Biological Clocks - physiology</topic><topic>Biology</topic><topic>Body Patterning - genetics</topic><topic>Body Patterning - physiology</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Embryonic development</topic><topic>Feedback, Physiological</topic><topic>Fibroblast Growth Factor 8 - genetics</topic><topic>Fibroblast Growth Factor 8 - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Mesoderm - embryology</topic><topic>Mesoderm - metabolism</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction</topic><topic>Simulation</topic><topic>Somites - embryology</topic><topic>Somites - metabolism</topic><topic>Wnt3A Protein - genetics</topic><topic>Wnt3A Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiedemann, Hendrik B</creatorcontrib><creatorcontrib>Schneltzer, Elida</creatorcontrib><creatorcontrib>Zeiser, Stefan</creatorcontrib><creatorcontrib>Hoesel, Bastian</creatorcontrib><creatorcontrib>Beckers, Johannes</creatorcontrib><creatorcontrib>Przemeck, Gerhard K H</creatorcontrib><creatorcontrib>de Angelis, Martin Hrabě</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiedemann, Hendrik B</au><au>Schneltzer, Elida</au><au>Zeiser, Stefan</au><au>Hoesel, Bastian</au><au>Beckers, Johannes</au><au>Przemeck, Gerhard K H</au><au>de Angelis, Martin Hrabě</au><au>Lubensky, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From dynamic expression patterns to boundary formation in the presomitic mesoderm</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>8</volume><issue>6</issue><spage>e1002586</spage><pages>e1002586-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22761566</pmid><doi>10.1371/journal.pcbi.1002586</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012-06, Vol.8 (6), p.e1002586 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313185996 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Biological Clocks - genetics Biological Clocks - physiology Biology Body Patterning - genetics Body Patterning - physiology Computational Biology Computer Simulation Embryonic development Feedback, Physiological Fibroblast Growth Factor 8 - genetics Fibroblast Growth Factor 8 - metabolism Gene expression Gene Expression Regulation, Developmental Gene Regulatory Networks Genetic aspects Genetics Mesoderm - embryology Mesoderm - metabolism Mice Models, Biological Physiological aspects Proteins RNA, Messenger - genetics RNA, Messenger - metabolism Signal Transduction Simulation Somites - embryology Somites - metabolism Wnt3A Protein - genetics Wnt3A Protein - metabolism |
title | From dynamic expression patterns to boundary formation in the presomitic mesoderm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20dynamic%20expression%20patterns%20to%20boundary%20formation%20in%20the%20presomitic%20mesoderm&rft.jtitle=PLoS%20computational%20biology&rft.au=Tiedemann,%20Hendrik%20B&rft.date=2012-06-01&rft.volume=8&rft.issue=6&rft.spage=e1002586&rft.pages=e1002586-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002586&rft_dat=%3Cgale_plos_%3EA295777198%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313185996&rft_id=info:pmid/22761566&rft_galeid=A295777198&rft_doaj_id=oai_doaj_org_article_2c7780ab01944a75814338a099e70ae1&rfr_iscdi=true |