Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes
Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art m...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2012-05, Vol.8 (5), p.e1002511-e1002511 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002511 |
---|---|
container_issue | 5 |
container_start_page | e1002511 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | Winter, Christof Kristiansen, Glen Kersting, Stephan Roy, Janine Aust, Daniela Knösel, Thomas Rümmele, Petra Jahnke, Beatrix Hentrich, Vera Rückert, Felix Niedergethmann, Marco Weichert, Wilko Bahra, Marcus Schlitt, Hans J Settmacher, Utz Friess, Helmut Büchler, Markus Saeger, Hans-Detlev Schroeder, Michael Pilarsky, Christian Grützmann, Robert |
description | Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice. |
doi_str_mv | 10.1371/journal.pcbi.1002511 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A293812959</galeid><doaj_id>oai_doaj_org_article_62632a3a8c0343be8f02bd4e0e2a108d</doaj_id><sourcerecordid>A293812959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-e80cf518ad4b7e0e685bfd3b58e9278276f12e4216ded286c5b5fa905f7ded213</originalsourceid><addsrcrecordid>eNptkktv1DAQxyMEog_4Bggsceklix-x43CoVFVQKlXiAmfLccbBu4kd7KSo3x5vN61ahHzwaOY3_3loiuIdwRvCavJpG5bo9bCZTOs2BGPKCXlRHBPOWVkzLl8-sY-Kk5S2GGezEa-LI0pFjlXNcTFehdAPgPoACRntDcTPyI1TDLfO9ygsswkjoClC58zsgkc2xBVEk54d-Dmh9g55mP-EuCtbnaBDUfvdfb5Fo467zPbgIb0pXlk9JHi7_qfFz69fflx-K2--X11fXtyURlA8lyCxsZxI3VVtDRiE5K3tWMslNLSWtBaWUKgoER10VArDW251g7mt9w7CTosPB91pCEmtm0qKsPwk50Jm4vpAdEFv1RRdbvNOBe3UvSPEXuk4OzOAElQwqpmWBrOKtSAtpm1X5b6oJlh2Wet8rba0I3QmryTq4Zno84h3v1QfbhVjnGNRZYGzVSCG3wukWY0uGRgG7SEsuW9MeCVqynhGP_6D_n-6lep1HsB5G3JdsxdVF7RhktCGN5mqDpSJIaUI9rFlgtX-xh601f7G1HpjOe3903Efkx6Oiv0FKmbQEA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185568</pqid></control><display><type>article</type><title>Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Winter, Christof ; Kristiansen, Glen ; Kersting, Stephan ; Roy, Janine ; Aust, Daniela ; Knösel, Thomas ; Rümmele, Petra ; Jahnke, Beatrix ; Hentrich, Vera ; Rückert, Felix ; Niedergethmann, Marco ; Weichert, Wilko ; Bahra, Marcus ; Schlitt, Hans J ; Settmacher, Utz ; Friess, Helmut ; Büchler, Markus ; Saeger, Hans-Detlev ; Schroeder, Michael ; Pilarsky, Christian ; Grützmann, Robert</creator><creatorcontrib>Winter, Christof ; Kristiansen, Glen ; Kersting, Stephan ; Roy, Janine ; Aust, Daniela ; Knösel, Thomas ; Rümmele, Petra ; Jahnke, Beatrix ; Hentrich, Vera ; Rückert, Felix ; Niedergethmann, Marco ; Weichert, Wilko ; Bahra, Marcus ; Schlitt, Hans J ; Settmacher, Utz ; Friess, Helmut ; Büchler, Markus ; Saeger, Hans-Detlev ; Schroeder, Michael ; Pilarsky, Christian ; Grützmann, Robert</creatorcontrib><description>Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002511</identifier><identifier>PMID: 22615549</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Biology ; Biomarkers, Tumor - genetics ; Breast cancer ; Cancer ; Cancer therapies ; Care and treatment ; Classification ; Computer Science ; Gene expression ; Genetic aspects ; Genetic markers ; Genetic Markers - genetics ; Genetic Predisposition to Disease - epidemiology ; Genetic Predisposition to Disease - genetics ; Humans ; Leukemia ; Male ; Medicine ; Methods ; Neural Networks (Computer) ; Outcome Assessment (Health Care) - methods ; Pancreatic cancer ; Pancreatic Neoplasms - diagnosis ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - mortality ; Ratings & rankings ; Sensitivity and Specificity ; Studies</subject><ispartof>PLoS computational biology, 2012-05, Vol.8 (5), p.e1002511-e1002511</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Winter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Winter C, Kristiansen G, Kersting S, Roy J, Aust D, et al. (2012) Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes. PLoS Comput Biol 8(5): e1002511. doi:10.1371/journal.pcbi.1002511</rights><rights>Winter et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-e80cf518ad4b7e0e685bfd3b58e9278276f12e4216ded286c5b5fa905f7ded213</citedby><cites>FETCH-LOGICAL-c620t-e80cf518ad4b7e0e685bfd3b58e9278276f12e4216ded286c5b5fa905f7ded213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355064/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355064/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22615549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winter, Christof</creatorcontrib><creatorcontrib>Kristiansen, Glen</creatorcontrib><creatorcontrib>Kersting, Stephan</creatorcontrib><creatorcontrib>Roy, Janine</creatorcontrib><creatorcontrib>Aust, Daniela</creatorcontrib><creatorcontrib>Knösel, Thomas</creatorcontrib><creatorcontrib>Rümmele, Petra</creatorcontrib><creatorcontrib>Jahnke, Beatrix</creatorcontrib><creatorcontrib>Hentrich, Vera</creatorcontrib><creatorcontrib>Rückert, Felix</creatorcontrib><creatorcontrib>Niedergethmann, Marco</creatorcontrib><creatorcontrib>Weichert, Wilko</creatorcontrib><creatorcontrib>Bahra, Marcus</creatorcontrib><creatorcontrib>Schlitt, Hans J</creatorcontrib><creatorcontrib>Settmacher, Utz</creatorcontrib><creatorcontrib>Friess, Helmut</creatorcontrib><creatorcontrib>Büchler, Markus</creatorcontrib><creatorcontrib>Saeger, Hans-Detlev</creatorcontrib><creatorcontrib>Schroeder, Michael</creatorcontrib><creatorcontrib>Pilarsky, Christian</creatorcontrib><creatorcontrib>Grützmann, Robert</creatorcontrib><title>Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biology</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic markers</subject><subject>Genetic Markers - genetics</subject><subject>Genetic Predisposition to Disease - epidemiology</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Male</subject><subject>Medicine</subject><subject>Methods</subject><subject>Neural Networks (Computer)</subject><subject>Outcome Assessment (Health Care) - methods</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - diagnosis</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - mortality</subject><subject>Ratings & rankings</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQxyMEog_4Bggsceklix-x43CoVFVQKlXiAmfLccbBu4kd7KSo3x5vN61ahHzwaOY3_3loiuIdwRvCavJpG5bo9bCZTOs2BGPKCXlRHBPOWVkzLl8-sY-Kk5S2GGezEa-LI0pFjlXNcTFehdAPgPoACRntDcTPyI1TDLfO9ygsswkjoClC58zsgkc2xBVEk54d-Dmh9g55mP-EuCtbnaBDUfvdfb5Fo467zPbgIb0pXlk9JHi7_qfFz69fflx-K2--X11fXtyURlA8lyCxsZxI3VVtDRiE5K3tWMslNLSWtBaWUKgoER10VArDW251g7mt9w7CTosPB91pCEmtm0qKsPwk50Jm4vpAdEFv1RRdbvNOBe3UvSPEXuk4OzOAElQwqpmWBrOKtSAtpm1X5b6oJlh2Wet8rba0I3QmryTq4Zno84h3v1QfbhVjnGNRZYGzVSCG3wukWY0uGRgG7SEsuW9MeCVqynhGP_6D_n-6lep1HsB5G3JdsxdVF7RhktCGN5mqDpSJIaUI9rFlgtX-xh601f7G1HpjOe3903Efkx6Oiv0FKmbQEA</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Winter, Christof</creator><creator>Kristiansen, Glen</creator><creator>Kersting, Stephan</creator><creator>Roy, Janine</creator><creator>Aust, Daniela</creator><creator>Knösel, Thomas</creator><creator>Rümmele, Petra</creator><creator>Jahnke, Beatrix</creator><creator>Hentrich, Vera</creator><creator>Rückert, Felix</creator><creator>Niedergethmann, Marco</creator><creator>Weichert, Wilko</creator><creator>Bahra, Marcus</creator><creator>Schlitt, Hans J</creator><creator>Settmacher, Utz</creator><creator>Friess, Helmut</creator><creator>Büchler, Markus</creator><creator>Saeger, Hans-Detlev</creator><creator>Schroeder, Michael</creator><creator>Pilarsky, Christian</creator><creator>Grützmann, Robert</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120501</creationdate><title>Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes</title><author>Winter, Christof ; Kristiansen, Glen ; Kersting, Stephan ; Roy, Janine ; Aust, Daniela ; Knösel, Thomas ; Rümmele, Petra ; Jahnke, Beatrix ; Hentrich, Vera ; Rückert, Felix ; Niedergethmann, Marco ; Weichert, Wilko ; Bahra, Marcus ; Schlitt, Hans J ; Settmacher, Utz ; Friess, Helmut ; Büchler, Markus ; Saeger, Hans-Detlev ; Schroeder, Michael ; Pilarsky, Christian ; Grützmann, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-e80cf518ad4b7e0e685bfd3b58e9278276f12e4216ded286c5b5fa905f7ded213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biology</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic markers</topic><topic>Genetic Markers - genetics</topic><topic>Genetic Predisposition to Disease - epidemiology</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Male</topic><topic>Medicine</topic><topic>Methods</topic><topic>Neural Networks (Computer)</topic><topic>Outcome Assessment (Health Care) - methods</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - diagnosis</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - mortality</topic><topic>Ratings & rankings</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winter, Christof</creatorcontrib><creatorcontrib>Kristiansen, Glen</creatorcontrib><creatorcontrib>Kersting, Stephan</creatorcontrib><creatorcontrib>Roy, Janine</creatorcontrib><creatorcontrib>Aust, Daniela</creatorcontrib><creatorcontrib>Knösel, Thomas</creatorcontrib><creatorcontrib>Rümmele, Petra</creatorcontrib><creatorcontrib>Jahnke, Beatrix</creatorcontrib><creatorcontrib>Hentrich, Vera</creatorcontrib><creatorcontrib>Rückert, Felix</creatorcontrib><creatorcontrib>Niedergethmann, Marco</creatorcontrib><creatorcontrib>Weichert, Wilko</creatorcontrib><creatorcontrib>Bahra, Marcus</creatorcontrib><creatorcontrib>Schlitt, Hans J</creatorcontrib><creatorcontrib>Settmacher, Utz</creatorcontrib><creatorcontrib>Friess, Helmut</creatorcontrib><creatorcontrib>Büchler, Markus</creatorcontrib><creatorcontrib>Saeger, Hans-Detlev</creatorcontrib><creatorcontrib>Schroeder, Michael</creatorcontrib><creatorcontrib>Pilarsky, Christian</creatorcontrib><creatorcontrib>Grützmann, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winter, Christof</au><au>Kristiansen, Glen</au><au>Kersting, Stephan</au><au>Roy, Janine</au><au>Aust, Daniela</au><au>Knösel, Thomas</au><au>Rümmele, Petra</au><au>Jahnke, Beatrix</au><au>Hentrich, Vera</au><au>Rückert, Felix</au><au>Niedergethmann, Marco</au><au>Weichert, Wilko</au><au>Bahra, Marcus</au><au>Schlitt, Hans J</au><au>Settmacher, Utz</au><au>Friess, Helmut</au><au>Büchler, Markus</au><au>Saeger, Hans-Detlev</au><au>Schroeder, Michael</au><au>Pilarsky, Christian</au><au>Grützmann, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>8</volume><issue>5</issue><spage>e1002511</spage><epage>e1002511</epage><pages>e1002511-e1002511</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22615549</pmid><doi>10.1371/journal.pcbi.1002511</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012-05, Vol.8 (5), p.e1002511-e1002511 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313185568 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Accuracy Algorithms Biology Biomarkers, Tumor - genetics Breast cancer Cancer Cancer therapies Care and treatment Classification Computer Science Gene expression Genetic aspects Genetic markers Genetic Markers - genetics Genetic Predisposition to Disease - epidemiology Genetic Predisposition to Disease - genetics Humans Leukemia Male Medicine Methods Neural Networks (Computer) Outcome Assessment (Health Care) - methods Pancreatic cancer Pancreatic Neoplasms - diagnosis Pancreatic Neoplasms - genetics Pancreatic Neoplasms - mortality Ratings & rankings Sensitivity and Specificity Studies |
title | Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Google%20goes%20cancer:%20improving%20outcome%20prediction%20for%20cancer%20patients%20by%20network-based%20ranking%20of%20marker%20genes&rft.jtitle=PLoS%20computational%20biology&rft.au=Winter,%20Christof&rft.date=2012-05-01&rft.volume=8&rft.issue=5&rft.spage=e1002511&rft.epage=e1002511&rft.pages=e1002511-e1002511&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002511&rft_dat=%3Cgale_plos_%3EA293812959%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313185568&rft_id=info:pmid/22615549&rft_galeid=A293812959&rft_doaj_id=oai_doaj_org_article_62632a3a8c0343be8f02bd4e0e2a108d&rfr_iscdi=true |