Universal pacemaker of genome evolution

A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2012-11, Vol.8 (11), p.e1002785-e1002785
Hauptverfasser: Snir, Sagi, Wolf, Yuri I, Koonin, Eugene V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002785
container_issue 11
container_start_page e1002785
container_title PLoS computational biology
container_volume 8
creator Snir, Sagi
Wolf, Yuri I
Koonin, Eugene V
description A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.
doi_str_mv 10.1371/journal.pcbi.1002785
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A312014939</galeid><doaj_id>oai_doaj_org_article_e16f30a8fc8245ac8f1f407c5c9202b2</doaj_id><sourcerecordid>A312014939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-4dfb57dc64db724da6c54c94168a2242359bfd907dfc81e86b32374109ac43d3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhi0Eou3CP0CwEgfoYRfbY8fJBamqoF2pAgnK2XL8Ebwk8dZOVvTf4-2mVRdxwXOwNX7mHc94EHpF8JKAIB_WYYy9apcbXfslwZiKkj9Bx4RzWAjg5dNH5yN0ktIa43ysiufoiALFFVRwjN796P3WxqTa-UZp26lfNs6Dmze2D52d221ox8GH_gV65lSb7Mtpn6Hrz5-uzy8XV18vVudnVwtdAAwLZlzNhdEFM7WgzKhCc6YrRopSUcoo8Kp2psLCOF0SWxY1UBCM4EppBgZm6M1edtOGJKcSkySQreRMiEys9oQJai030Xcq3sqgvLxzhNhIFQevWystKRxgVeZUlHGlS0ccw0JzXVFMa5q1Pk7ZxrqzRtt-iKo9ED286f1P2YStBJ4bXrEs8H4SiOFmtGmQnU_atq3qbRjzu2lewBnhGX37F_rv6pZ7qlG5AN-7kPPqbMZ2XofeOp_9Z0AoJmz3gzN0ehCQmcH-Hho1piRX37_9B_vlkGV7VseQUrTuoSsEy9383T9f7uZPTvOXw14_7uhD0P3AwR_AItTq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185477</pqid></control><display><type>article</type><title>Universal pacemaker of genome evolution</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Snir, Sagi ; Wolf, Yuri I ; Koonin, Eugene V</creator><creatorcontrib>Snir, Sagi ; Wolf, Yuri I ; Koonin, Eugene V</creatorcontrib><description>A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002785</identifier><identifier>PMID: 23209393</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Biology ; Comparative analysis ; Computational Biology ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Genome, Archaeal - genetics ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Least-Squares Analysis ; Mitochondrial DNA ; Models, Genetic ; Phylogenetics ; Phylogeny ; Studies</subject><ispartof>PLoS computational biology, 2012-11, Vol.8 (11), p.e1002785-e1002785</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Snir S, Wolf YI, Koonin EV (2012) Universal Pacemaker of Genome Evolution. PLoS Comput Biol 8(11): e1002785. doi:10.1371/journal.pcbi.1002785</rights><rights>2012</rights><rights>2012 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Snir S, Wolf YI, Koonin EV (2012) Universal Pacemaker of Genome Evolution. PLoS Comput Biol 8(11): e1002785. doi:10.1371/journal.pcbi.1002785</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-4dfb57dc64db724da6c54c94168a2242359bfd907dfc81e86b32374109ac43d3</citedby><cites>FETCH-LOGICAL-c633t-4dfb57dc64db724da6c54c94168a2242359bfd907dfc81e86b32374109ac43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510094/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510094/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23209393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snir, Sagi</creatorcontrib><creatorcontrib>Wolf, Yuri I</creatorcontrib><creatorcontrib>Koonin, Eugene V</creatorcontrib><title>Universal pacemaker of genome evolution</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.</description><subject>Bacteria</subject><subject>Biology</subject><subject>Comparative analysis</subject><subject>Computational Biology</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Genome, Archaeal - genetics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Least-Squares Analysis</subject><subject>Mitochondrial DNA</subject><subject>Models, Genetic</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhi0Eou3CP0CwEgfoYRfbY8fJBamqoF2pAgnK2XL8Ebwk8dZOVvTf4-2mVRdxwXOwNX7mHc94EHpF8JKAIB_WYYy9apcbXfslwZiKkj9Bx4RzWAjg5dNH5yN0ktIa43ysiufoiALFFVRwjN796P3WxqTa-UZp26lfNs6Dmze2D52d221ox8GH_gV65lSb7Mtpn6Hrz5-uzy8XV18vVudnVwtdAAwLZlzNhdEFM7WgzKhCc6YrRopSUcoo8Kp2psLCOF0SWxY1UBCM4EppBgZm6M1edtOGJKcSkySQreRMiEys9oQJai030Xcq3sqgvLxzhNhIFQevWystKRxgVeZUlHGlS0ccw0JzXVFMa5q1Pk7ZxrqzRtt-iKo9ED286f1P2YStBJ4bXrEs8H4SiOFmtGmQnU_atq3qbRjzu2lewBnhGX37F_rv6pZ7qlG5AN-7kPPqbMZ2XofeOp_9Z0AoJmz3gzN0ehCQmcH-Hho1piRX37_9B_vlkGV7VseQUrTuoSsEy9383T9f7uZPTvOXw14_7uhD0P3AwR_AItTq</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Snir, Sagi</creator><creator>Wolf, Yuri I</creator><creator>Koonin, Eugene V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121101</creationdate><title>Universal pacemaker of genome evolution</title><author>Snir, Sagi ; Wolf, Yuri I ; Koonin, Eugene V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-4dfb57dc64db724da6c54c94168a2242359bfd907dfc81e86b32374109ac43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria</topic><topic>Biology</topic><topic>Comparative analysis</topic><topic>Computational Biology</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Genome, Archaeal - genetics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Least-Squares Analysis</topic><topic>Mitochondrial DNA</topic><topic>Models, Genetic</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snir, Sagi</creatorcontrib><creatorcontrib>Wolf, Yuri I</creatorcontrib><creatorcontrib>Koonin, Eugene V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snir, Sagi</au><au>Wolf, Yuri I</au><au>Koonin, Eugene V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal pacemaker of genome evolution</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>8</volume><issue>11</issue><spage>e1002785</spage><epage>e1002785</epage><pages>e1002785-e1002785</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23209393</pmid><doi>10.1371/journal.pcbi.1002785</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2012-11, Vol.8 (11), p.e1002785-e1002785
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313185477
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Bacteria
Biology
Comparative analysis
Computational Biology
Evolution
Evolution, Molecular
Evolutionary genetics
Genome, Archaeal - genetics
Genome, Bacterial - genetics
Genomes
Genomics
Least-Squares Analysis
Mitochondrial DNA
Models, Genetic
Phylogenetics
Phylogeny
Studies
title Universal pacemaker of genome evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20pacemaker%20of%20genome%20evolution&rft.jtitle=PLoS%20computational%20biology&rft.au=Snir,%20Sagi&rft.date=2012-11-01&rft.volume=8&rft.issue=11&rft.spage=e1002785&rft.epage=e1002785&rft.pages=e1002785-e1002785&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002785&rft_dat=%3Cgale_plos_%3EA312014939%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313185477&rft_id=info:pmid/23209393&rft_galeid=A312014939&rft_doaj_id=oai_doaj_org_article_e16f30a8fc8245ac8f1f407c5c9202b2&rfr_iscdi=true