Entropic tension in crowded membranes
Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered b...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2012, Vol.8 (3), p.e1002431-e1002431 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002431 |
---|---|
container_issue | 3 |
container_start_page | e1002431 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | Lindén, Martin Sens, Pierre Phillips, Rob |
description | Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than [Formula: see text] in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins. |
doi_str_mv | 10.1371/journal.pcbi.1002431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1313185078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5438728eec5645b499f9ad2eb85005d7</doaj_id><sourcerecordid>2903876401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-b7815d699e7bbe8c24629dbe78295c854cc421ed43dca2d022607b55777d8cf3</originalsourceid><addsrcrecordid>eNptUltrFDEUHkSxtfoPRBdERHDXXCfJi7DUagsLvhRfQy5n2ywzkzGZafHfm-1MS7dICDmcfN93rlX1FqMVpgJ_3cUxdaZZ9c6GFUaIMIqfVceYc7oUlMvnj-yj6lXOO4SKqeqX1REpYCkRPq4-nnVDin1wiwG6HGK3CN3CpXjrwS9aaG0yHeTX1YutaTK8md-T6vLH2eXp-XLz6-fF6XqzdFzVw9IKibmvlQJhLUhHWE2UtyAkUdxJzpxjBINn1DtDPCKkRsJyLoTw0m3pSfV-ku2bmPVcYNaYliM5ErIgLiaEj2an-xRak_7qaIK-c8R0pU0agmtA81KiIBLA8Zpxy5TaKuMJ2KKEuBdF68uklW-hH-2B2vfwe32nNo6aUMIxLvBvc3KjbcE7KI0zzQHr8KcL1_oq3mhKES-3CHyeBK6f0M7XG733IVKmg4S62Qf7NAdL8c8IedBtyA6apkwjjlkrhiStGaoL8sMT5P_7xiZUGW3OCbYPCWCk9-t0z9L7ddLzOhXau8c1P5Du94f-A-H6xck</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313185078</pqid></control><display><type>article</type><title>Entropic tension in crowded membranes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lindén, Martin ; Sens, Pierre ; Phillips, Rob</creator><contributor>Tajkhorshid, Emad</contributor><creatorcontrib>Lindén, Martin ; Sens, Pierre ; Phillips, Rob ; Tajkhorshid, Emad</creatorcontrib><description>Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than [Formula: see text] in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002431</identifier><identifier>PMID: 22438801</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Case studies ; Cell Membrane - physiology ; Computer Simulation ; Condensed Matter ; Estimates ; Experiments ; Lipids ; Membrane Fluidity - physiology ; Membrane Proteins - metabolism ; Membranes ; Models, Biological ; Osmotic Pressure - physiology ; Other ; Physics ; Proteins</subject><ispartof>PLoS computational biology, 2012, Vol.8 (3), p.e1002431-e1002431</ispartof><rights>2012 Lindén et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lindén M, Sens P, Phillips R (2012) Entropic Tension in Crowded Membranes. PLoS Comput Biol 8(3): e1002431. doi:10.1371/journal.pcbi.1002431</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Lindén et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-b7815d699e7bbe8c24629dbe78295c854cc421ed43dca2d022607b55777d8cf3</citedby><cites>FETCH-LOGICAL-c596t-b7815d699e7bbe8c24629dbe78295c854cc421ed43dca2d022607b55777d8cf3</cites><orcidid>0000-0003-4523-3791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305330/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305330/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2100,2926,4022,23864,27921,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22438801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02896079$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232511$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Tajkhorshid, Emad</contributor><creatorcontrib>Lindén, Martin</creatorcontrib><creatorcontrib>Sens, Pierre</creatorcontrib><creatorcontrib>Phillips, Rob</creatorcontrib><title>Entropic tension in crowded membranes</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than [Formula: see text] in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.</description><subject>Biology</subject><subject>Case studies</subject><subject>Cell Membrane - physiology</subject><subject>Computer Simulation</subject><subject>Condensed Matter</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Lipids</subject><subject>Membrane Fluidity - physiology</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Osmotic Pressure - physiology</subject><subject>Other</subject><subject>Physics</subject><subject>Proteins</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNptUltrFDEUHkSxtfoPRBdERHDXXCfJi7DUagsLvhRfQy5n2ywzkzGZafHfm-1MS7dICDmcfN93rlX1FqMVpgJ_3cUxdaZZ9c6GFUaIMIqfVceYc7oUlMvnj-yj6lXOO4SKqeqX1REpYCkRPq4-nnVDin1wiwG6HGK3CN3CpXjrwS9aaG0yHeTX1YutaTK8md-T6vLH2eXp-XLz6-fF6XqzdFzVw9IKibmvlQJhLUhHWE2UtyAkUdxJzpxjBINn1DtDPCKkRsJyLoTw0m3pSfV-ku2bmPVcYNaYliM5ErIgLiaEj2an-xRak_7qaIK-c8R0pU0agmtA81KiIBLA8Zpxy5TaKuMJ2KKEuBdF68uklW-hH-2B2vfwe32nNo6aUMIxLvBvc3KjbcE7KI0zzQHr8KcL1_oq3mhKES-3CHyeBK6f0M7XG733IVKmg4S62Qf7NAdL8c8IedBtyA6apkwjjlkrhiStGaoL8sMT5P_7xiZUGW3OCbYPCWCk9-t0z9L7ddLzOhXau8c1P5Du94f-A-H6xck</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Lindén, Martin</creator><creator>Sens, Pierre</creator><creator>Phillips, Rob</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4523-3791</orcidid></search><sort><creationdate>2012</creationdate><title>Entropic tension in crowded membranes</title><author>Lindén, Martin ; Sens, Pierre ; Phillips, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-b7815d699e7bbe8c24629dbe78295c854cc421ed43dca2d022607b55777d8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>Case studies</topic><topic>Cell Membrane - physiology</topic><topic>Computer Simulation</topic><topic>Condensed Matter</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Lipids</topic><topic>Membrane Fluidity - physiology</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Osmotic Pressure - physiology</topic><topic>Other</topic><topic>Physics</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindén, Martin</creatorcontrib><creatorcontrib>Sens, Pierre</creatorcontrib><creatorcontrib>Phillips, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindén, Martin</au><au>Sens, Pierre</au><au>Phillips, Rob</au><au>Tajkhorshid, Emad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropic tension in crowded membranes</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012</date><risdate>2012</risdate><volume>8</volume><issue>3</issue><spage>e1002431</spage><epage>e1002431</epage><pages>e1002431-e1002431</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than [Formula: see text] in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22438801</pmid><doi>10.1371/journal.pcbi.1002431</doi><orcidid>https://orcid.org/0000-0003-4523-3791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012, Vol.8 (3), p.e1002431-e1002431 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313185078 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biology Case studies Cell Membrane - physiology Computer Simulation Condensed Matter Estimates Experiments Lipids Membrane Fluidity - physiology Membrane Proteins - metabolism Membranes Models, Biological Osmotic Pressure - physiology Other Physics Proteins |
title | Entropic tension in crowded membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropic%20tension%20in%20crowded%20membranes&rft.jtitle=PLoS%20computational%20biology&rft.au=Lind%C3%A9n,%20Martin&rft.date=2012&rft.volume=8&rft.issue=3&rft.spage=e1002431&rft.epage=e1002431&rft.pages=e1002431-e1002431&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002431&rft_dat=%3Cproquest_plos_%3E2903876401%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313185078&rft_id=info:pmid/22438801&rft_doaj_id=oai_doaj_org_article_5438728eec5645b499f9ad2eb85005d7&rfr_iscdi=true |