Phasic firing in vasopressin cells: understanding its functional significance through computational models
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuou...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2012-10, Vol.8 (10), p.e1002740-e1002740 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002740 |
---|---|
container_issue | 10 |
container_start_page | e1002740 |
container_title | PLoS computational biology |
container_volume | 8 |
creator | MacGregor, Duncan J Leng, Gareth |
description | Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing. |
doi_str_mv | 10.1371/journal.pcbi.1002740 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A309587516</galeid><doaj_id>oai_doaj_org_article_08843f262b4e48cb85a1700f49af4014</doaj_id><sourcerecordid>A309587516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-b04c93432b9e966a9c278328ceb503f635115bbe18cb5912e5b83be7f426352f3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEou3CN0AQiUs57OJn4nBAqioeK1WAeJwt27GzXiX21nYq-PY4u2nVRb2gOXhk_-Y_nkdRvIBgBXEN3279GJzoVzsl7QoCgGoCHhWnkFK8rDFlj-_5J8VZjFsAsttUT4sThEGDG9ScFttvGxGtKo0N1nWldeWNiH4XdIzZV7rv47tydK0OMQnX7pkUSzM6lazP-ctoO2eNVcIpXaZN8GO3KZUfdmMSMzL4VvfxWfHEiD7q5_O5KH59_PDz8vPy6uun9eXF1VJVFUxLCYhqMMFINrqpKtEoVDOMmNKSAmwqTCGkUmrIlKQNRJpKhqWuDUH5DRm8KF4ddHe9j3xuU-QQZ2OE1SQT6wPRerHlu2AHEf5wLyzfX_jQcRGSVb3mgDGCDaqQJJrkjIwKWANgSCMMAXDSej9nG-WgW6VdCqI_Ej1-cXbDO3_DMalplQe0KM5ngeCvRx0TH2ycGi-c9mP-dy4XVIjBKqOv_0Efrm6mOpELsM74nFdNovwiz52ymu61Vg9Q2Vo9WOWdNjbfHwW8OQrITNK_UyfGGPn6x_f_YL8cs-TAquBjDNrc9Q4CPm36bZF82nQ-b3oOe3m_73dBt6uN_wISjvn1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313184874</pqid></control><display><type>article</type><title>Phasic firing in vasopressin cells: understanding its functional significance through computational models</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>MacGregor, Duncan J ; Leng, Gareth</creator><contributor>Behrens, Tim</contributor><creatorcontrib>MacGregor, Duncan J ; Leng, Gareth ; Behrens, Tim</creatorcontrib><description>Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002740</identifier><identifier>PMID: 23093929</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Animals ; Biology ; Computational biology ; Computer Simulation ; Distributed control systems ; Experiments ; Medicine ; Models, Neurological ; Neurons ; Neurons - physiology ; Osmotic Pressure ; Physiological aspects ; Population ; Rats ; Signal processing ; Supraoptic Nucleus - cytology ; Synapses ; Vasopressin ; Vasopressins - physiology</subject><ispartof>PLoS computational biology, 2012-10, Vol.8 (10), p.e1002740-e1002740</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>MacGregor, Leng. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: MacGregor DJ, Leng G (2012) Phasic Firing in Vasopressin Cells: Understanding Its Functional Significance through Computational Models. PLoS Comput Biol 8(10): e1002740. doi:10.1371/journal.pcbi.1002740</rights><rights>2012 MacGregor, Leng 2012 MacGregor, Leng</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-b04c93432b9e966a9c278328ceb503f635115bbe18cb5912e5b83be7f426352f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475655/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475655/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23093929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Behrens, Tim</contributor><creatorcontrib>MacGregor, Duncan J</creatorcontrib><creatorcontrib>Leng, Gareth</creatorcontrib><title>Phasic firing in vasopressin cells: understanding its functional significance through computational models</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biology</subject><subject>Computational biology</subject><subject>Computer Simulation</subject><subject>Distributed control systems</subject><subject>Experiments</subject><subject>Medicine</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Osmotic Pressure</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Rats</subject><subject>Signal processing</subject><subject>Supraoptic Nucleus - cytology</subject><subject>Synapses</subject><subject>Vasopressin</subject><subject>Vasopressins - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEou3CN0AQiUs57OJn4nBAqioeK1WAeJwt27GzXiX21nYq-PY4u2nVRb2gOXhk_-Y_nkdRvIBgBXEN3279GJzoVzsl7QoCgGoCHhWnkFK8rDFlj-_5J8VZjFsAsttUT4sThEGDG9ScFttvGxGtKo0N1nWldeWNiH4XdIzZV7rv47tydK0OMQnX7pkUSzM6lazP-ctoO2eNVcIpXaZN8GO3KZUfdmMSMzL4VvfxWfHEiD7q5_O5KH59_PDz8vPy6uun9eXF1VJVFUxLCYhqMMFINrqpKtEoVDOMmNKSAmwqTCGkUmrIlKQNRJpKhqWuDUH5DRm8KF4ddHe9j3xuU-QQZ2OE1SQT6wPRerHlu2AHEf5wLyzfX_jQcRGSVb3mgDGCDaqQJJrkjIwKWANgSCMMAXDSej9nG-WgW6VdCqI_Ej1-cXbDO3_DMalplQe0KM5ngeCvRx0TH2ycGi-c9mP-dy4XVIjBKqOv_0Efrm6mOpELsM74nFdNovwiz52ymu61Vg9Q2Vo9WOWdNjbfHwW8OQrITNK_UyfGGPn6x_f_YL8cs-TAquBjDNrc9Q4CPm36bZF82nQ-b3oOe3m_73dBt6uN_wISjvn1</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>MacGregor, Duncan J</creator><creator>Leng, Gareth</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121001</creationdate><title>Phasic firing in vasopressin cells: understanding its functional significance through computational models</title><author>MacGregor, Duncan J ; Leng, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-b04c93432b9e966a9c278328ceb503f635115bbe18cb5912e5b83be7f426352f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biology</topic><topic>Computational biology</topic><topic>Computer Simulation</topic><topic>Distributed control systems</topic><topic>Experiments</topic><topic>Medicine</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Osmotic Pressure</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Rats</topic><topic>Signal processing</topic><topic>Supraoptic Nucleus - cytology</topic><topic>Synapses</topic><topic>Vasopressin</topic><topic>Vasopressins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacGregor, Duncan J</creatorcontrib><creatorcontrib>Leng, Gareth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacGregor, Duncan J</au><au>Leng, Gareth</au><au>Behrens, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phasic firing in vasopressin cells: understanding its functional significance through computational models</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>8</volume><issue>10</issue><spage>e1002740</spage><epage>e1002740</epage><pages>e1002740-e1002740</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23093929</pmid><doi>10.1371/journal.pcbi.1002740</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2012-10, Vol.8 (10), p.e1002740-e1002740 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313184874 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Action Potentials - physiology Animals Biology Computational biology Computer Simulation Distributed control systems Experiments Medicine Models, Neurological Neurons Neurons - physiology Osmotic Pressure Physiological aspects Population Rats Signal processing Supraoptic Nucleus - cytology Synapses Vasopressin Vasopressins - physiology |
title | Phasic firing in vasopressin cells: understanding its functional significance through computational models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phasic%20firing%20in%20vasopressin%20cells:%20understanding%20its%20functional%20significance%20through%20computational%20models&rft.jtitle=PLoS%20computational%20biology&rft.au=MacGregor,%20Duncan%20J&rft.date=2012-10-01&rft.volume=8&rft.issue=10&rft.spage=e1002740&rft.epage=e1002740&rft.pages=e1002740-e1002740&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002740&rft_dat=%3Cgale_plos_%3EA309587516%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313184874&rft_id=info:pmid/23093929&rft_galeid=A309587516&rft_doaj_id=oai_doaj_org_article_08843f262b4e48cb85a1700f49af4014&rfr_iscdi=true |