Single sample expression-anchored mechanisms predict survival in head and neck cancer

Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2012-01, Vol.8 (1), p.e1002350-e1002350
Hauptverfasser: Yang, Xinan, Regan, Kelly, Huang, Yong, Zhang, Qingbei, Li, Jianrong, Seiwert, Tanguy Y, Cohen, Ezra E W, Xing, H Rosie, Lussier, Yves A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002350
container_issue 1
container_start_page e1002350
container_title PLoS computational biology
container_volume 8
creator Yang, Xinan
Regan, Kelly
Huang, Yong
Zhang, Qingbei
Li, Jianrong
Seiwert, Tanguy Y
Cohen, Ezra E W
Xing, H Rosie
Lussier, Yves A
description Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These "causality challenges" hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate "personal mechanism signatures" of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of "Oncogenic FAIME Features of HNSCC" (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p
doi_str_mv 10.1371/journal.pcbi.1002350
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A280092135</galeid><doaj_id>oai_doaj_org_article_4da62f26a5f6419c839b7d8aeb4ae10e</doaj_id><sourcerecordid>A280092135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-7985ca7c730051d108637dbf23ccf16d8a1416cfc6b1559a390383b1a2b6d86c3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEou3CP0AQiQPisIs_Ese5IFUVHytVIFF6tib2ZNdLYi92sir_vl42rbqoF-SDLc_zvuMZT5a9omRBeUU_bPwYHHSLrW7sghLCeEmeZKe0LPm84qV8-uB8kp3FuCEkHWvxPDthjNW0lOVpdn1l3arDPEK_TRvebAPGaL2bg9NrH9DkPeo1OBv7mKegsXrI4xh2dgddbl2-RjA5OJM71L9ynWQYXmTPWugivpz2WXb9-dPPi6_zy-9flhfnl3MtBBnmVS1LDZWuOCElNZRIwSvTtIxr3VJhJNCCCt1q0aRSauA14ZI3FFiTgkLzWfbm4LvtfFRTR6KiPC1ZVEWRiOWBMB42ahtsD-GP8mDV3wsfVgrCYHWHqjAgWMsElK0oaK0lr5sqvQGbApASTF4fp2xj06PR6IYA3ZHpccTZtVr5neJMCFnJZPBuMgj-94hxUL2NGrsOHPoxqprWjFX7r5xlb_8hHy9uolaQ3m9d61NavfdU50wSUjPKy0QtHqHSMthb7R22Nt0fCd4fCRIz4M2wgjFGtbz68R_st2O2OLA6-BgDtveto0TtZ_quSLWfaTXNdJK9ftj2e9HdEPNbv9PxpA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313184744</pqid></control><display><type>article</type><title>Single sample expression-anchored mechanisms predict survival in head and neck cancer</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yang, Xinan ; Regan, Kelly ; Huang, Yong ; Zhang, Qingbei ; Li, Jianrong ; Seiwert, Tanguy Y ; Cohen, Ezra E W ; Xing, H Rosie ; Lussier, Yves A</creator><creatorcontrib>Yang, Xinan ; Regan, Kelly ; Huang, Yong ; Zhang, Qingbei ; Li, Jianrong ; Seiwert, Tanguy Y ; Cohen, Ezra E W ; Xing, H Rosie ; Lussier, Yves A</creatorcontrib><description>Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These "causality challenges" hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate "personal mechanism signatures" of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of "Oncogenic FAIME Features of HNSCC" (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p&lt;0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p&lt;0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002350</identifier><identifier>PMID: 22291585</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Apoptosis ; Biology ; Biomarkers ; Carcinoma, Squamous Cell - genetics ; Carcinoma, Squamous Cell - metabolism ; Carcinoma, Squamous Cell - mortality ; Cohort Studies ; Development and progression ; DNA replication ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Genomics ; Head &amp; neck cancer ; Head and neck cancer ; Head and Neck Neoplasms - genetics ; Head and Neck Neoplasms - metabolism ; Head and Neck Neoplasms - mortality ; Humans ; Lasers ; Medical research ; Medicine ; Patient outcomes ; Patients ; Physiological aspects ; Principal components analysis ; ROC Curve ; Statistical methods ; Studies ; Tumor proteins</subject><ispartof>PLoS computational biology, 2012-01, Vol.8 (1), p.e1002350-e1002350</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Yang X, Regan K, Huang Y, Zhang Q, Li J, et al. (2012) Single Sample Expression-Anchored Mechanisms Predict Survival in Head and Neck Cancer. PLoS Comput Biol 8(1): e1002350. doi:10.1371/journal.pcbi.1002350</rights><rights>Yang et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-7985ca7c730051d108637dbf23ccf16d8a1416cfc6b1559a390383b1a2b6d86c3</citedby><cites>FETCH-LOGICAL-c660t-7985ca7c730051d108637dbf23ccf16d8a1416cfc6b1559a390383b1a2b6d86c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266878/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266878/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22291585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xinan</creatorcontrib><creatorcontrib>Regan, Kelly</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Zhang, Qingbei</creatorcontrib><creatorcontrib>Li, Jianrong</creatorcontrib><creatorcontrib>Seiwert, Tanguy Y</creatorcontrib><creatorcontrib>Cohen, Ezra E W</creatorcontrib><creatorcontrib>Xing, H Rosie</creatorcontrib><creatorcontrib>Lussier, Yves A</creatorcontrib><title>Single sample expression-anchored mechanisms predict survival in head and neck cancer</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These "causality challenges" hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate "personal mechanism signatures" of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of "Oncogenic FAIME Features of HNSCC" (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p&lt;0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p&lt;0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume).</description><subject>Apoptosis</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Carcinoma, Squamous Cell - genetics</subject><subject>Carcinoma, Squamous Cell - metabolism</subject><subject>Carcinoma, Squamous Cell - mortality</subject><subject>Cohort Studies</subject><subject>Development and progression</subject><subject>DNA replication</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Head &amp; neck cancer</subject><subject>Head and neck cancer</subject><subject>Head and Neck Neoplasms - genetics</subject><subject>Head and Neck Neoplasms - metabolism</subject><subject>Head and Neck Neoplasms - mortality</subject><subject>Humans</subject><subject>Lasers</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Physiological aspects</subject><subject>Principal components analysis</subject><subject>ROC Curve</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Tumor proteins</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEou3CP0AQiQPisIs_Ese5IFUVHytVIFF6tib2ZNdLYi92sir_vl42rbqoF-SDLc_zvuMZT5a9omRBeUU_bPwYHHSLrW7sghLCeEmeZKe0LPm84qV8-uB8kp3FuCEkHWvxPDthjNW0lOVpdn1l3arDPEK_TRvebAPGaL2bg9NrH9DkPeo1OBv7mKegsXrI4xh2dgddbl2-RjA5OJM71L9ynWQYXmTPWugivpz2WXb9-dPPi6_zy-9flhfnl3MtBBnmVS1LDZWuOCElNZRIwSvTtIxr3VJhJNCCCt1q0aRSauA14ZI3FFiTgkLzWfbm4LvtfFRTR6KiPC1ZVEWRiOWBMB42ahtsD-GP8mDV3wsfVgrCYHWHqjAgWMsElK0oaK0lr5sqvQGbApASTF4fp2xj06PR6IYA3ZHpccTZtVr5neJMCFnJZPBuMgj-94hxUL2NGrsOHPoxqprWjFX7r5xlb_8hHy9uolaQ3m9d61NavfdU50wSUjPKy0QtHqHSMthb7R22Nt0fCd4fCRIz4M2wgjFGtbz68R_st2O2OLA6-BgDtveto0TtZ_quSLWfaTXNdJK9ftj2e9HdEPNbv9PxpA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yang, Xinan</creator><creator>Regan, Kelly</creator><creator>Huang, Yong</creator><creator>Zhang, Qingbei</creator><creator>Li, Jianrong</creator><creator>Seiwert, Tanguy Y</creator><creator>Cohen, Ezra E W</creator><creator>Xing, H Rosie</creator><creator>Lussier, Yves A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120101</creationdate><title>Single sample expression-anchored mechanisms predict survival in head and neck cancer</title><author>Yang, Xinan ; Regan, Kelly ; Huang, Yong ; Zhang, Qingbei ; Li, Jianrong ; Seiwert, Tanguy Y ; Cohen, Ezra E W ; Xing, H Rosie ; Lussier, Yves A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-7985ca7c730051d108637dbf23ccf16d8a1416cfc6b1559a390383b1a2b6d86c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Apoptosis</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Carcinoma, Squamous Cell - genetics</topic><topic>Carcinoma, Squamous Cell - metabolism</topic><topic>Carcinoma, Squamous Cell - mortality</topic><topic>Cohort Studies</topic><topic>Development and progression</topic><topic>DNA replication</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Head &amp; neck cancer</topic><topic>Head and neck cancer</topic><topic>Head and Neck Neoplasms - genetics</topic><topic>Head and Neck Neoplasms - metabolism</topic><topic>Head and Neck Neoplasms - mortality</topic><topic>Humans</topic><topic>Lasers</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Physiological aspects</topic><topic>Principal components analysis</topic><topic>ROC Curve</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Tumor proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xinan</creatorcontrib><creatorcontrib>Regan, Kelly</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Zhang, Qingbei</creatorcontrib><creatorcontrib>Li, Jianrong</creatorcontrib><creatorcontrib>Seiwert, Tanguy Y</creatorcontrib><creatorcontrib>Cohen, Ezra E W</creatorcontrib><creatorcontrib>Xing, H Rosie</creatorcontrib><creatorcontrib>Lussier, Yves A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xinan</au><au>Regan, Kelly</au><au>Huang, Yong</au><au>Zhang, Qingbei</au><au>Li, Jianrong</au><au>Seiwert, Tanguy Y</au><au>Cohen, Ezra E W</au><au>Xing, H Rosie</au><au>Lussier, Yves A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single sample expression-anchored mechanisms predict survival in head and neck cancer</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>e1002350</spage><epage>e1002350</epage><pages>e1002350-e1002350</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These "causality challenges" hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate "personal mechanism signatures" of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of "Oncogenic FAIME Features of HNSCC" (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p&lt;0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p&lt;0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22291585</pmid><doi>10.1371/journal.pcbi.1002350</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2012-01, Vol.8 (1), p.e1002350-e1002350
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313184744
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Apoptosis
Biology
Biomarkers
Carcinoma, Squamous Cell - genetics
Carcinoma, Squamous Cell - metabolism
Carcinoma, Squamous Cell - mortality
Cohort Studies
Development and progression
DNA replication
Gene expression
Gene Expression Profiling
Genetic aspects
Genomics
Head & neck cancer
Head and neck cancer
Head and Neck Neoplasms - genetics
Head and Neck Neoplasms - metabolism
Head and Neck Neoplasms - mortality
Humans
Lasers
Medical research
Medicine
Patient outcomes
Patients
Physiological aspects
Principal components analysis
ROC Curve
Statistical methods
Studies
Tumor proteins
title Single sample expression-anchored mechanisms predict survival in head and neck cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20sample%20expression-anchored%20mechanisms%20predict%20survival%20in%20head%20and%20neck%20cancer&rft.jtitle=PLoS%20computational%20biology&rft.au=Yang,%20Xinan&rft.date=2012-01-01&rft.volume=8&rft.issue=1&rft.spage=e1002350&rft.epage=e1002350&rft.pages=e1002350-e1002350&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002350&rft_dat=%3Cgale_plos_%3EA280092135%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313184744&rft_id=info:pmid/22291585&rft_galeid=A280092135&rft_doaj_id=oai_doaj_org_article_4da62f26a5f6419c839b7d8aeb4ae10e&rfr_iscdi=true