A minimal model of metabolism-based chemotaxis

Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-12, Vol.6 (12), p.e1001004-e1001004
Hauptverfasser: Egbert, Matthew D, Barandiaran, Xabier E, Di Paolo, Ezequiel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1001004
container_issue 12
container_start_page e1001004
container_title PLoS computational biology
container_volume 6
creator Egbert, Matthew D
Barandiaran, Xabier E
Di Paolo, Ezequiel A
description Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.
doi_str_mv 10.1371/journal.pcbi.1001004
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A245953031</galeid><doaj_id>oai_doaj_org_article_4fc03ab709f841c0b2c203806ae271c7</doaj_id><sourcerecordid>A245953031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-6def96f90941f1e10bd9065344d4ae4d7bf4cb75decbb78fd2c716772e3d48a3</originalsourceid><addsrcrecordid>eNqVkt2L1DAQwIMo3rn6H4gu-CA-tCZN0rQvB8vhx8KhoPce8jHZy5I2a9PK-d-bdXvHFQSRCWSY_GYm84HQS4JLQgV5v4_T0KtQHoz2JcE4H_YInRPOaSEobx4_0M_Qs5T2GGe1rZ-is4oQgSmpzlG5WXe-950K6y5aCOvo1h2MSsfgU1dolcCuzQ10cVS3Pj1HT5wKCV7M9wpdf_xwffm5uPr6aXu5uSqMoHgsaguurV2LW0YcAYK1bXHNKWOWKWBWaMeMFtyC0Vo0zlZGkFqICqhljaIr9PoU9hBiknOlSRKapWE1x5nYnggb1V4ehlzB8EtG5eUfQxx2Ug2jNwEkcwZTpQVuXcOIwboyFaYNrhVUguQPr9DFnG3SHVgD_TiosAi6fOn9jdzFn5Li3PPqGODtHGCIPyZIo-x8MhCC6iFOSTYNxYTXgv-brLBoBON1Jt-cyJ3KNfjexZzaHGm5qRhvOc0DzFT5FyqLhc6b2IPz2b5weLdwyMwIt-NOTSnJ7fdv_8F-WbLsxJohpjSAu28fwfK4r3dTlMd9lfO-ZrdXD1t_73S3oPQ3NjPkeg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820787456</pqid></control><display><type>article</type><title>A minimal model of metabolism-based chemotaxis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Egbert, Matthew D ; Barandiaran, Xabier E ; Di Paolo, Ezequiel A</creator><creatorcontrib>Egbert, Matthew D ; Barandiaran, Xabier E ; Di Paolo, Ezequiel A</creatorcontrib><description>Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1001004</identifier><identifier>PMID: 21170312</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptability ; Attention ; Attractants ; Bacteria ; Bacterial Physiological Phenomena ; Behavior ; Cell Biology/Chemical Biology of the Cell ; Chemotaxis ; Chemotaxis - physiology ; Computational Biology/Metabolic Networks ; Computational Biology/Systems Biology ; Computer applications ; E coli ; Environmental conditions ; Environmental effects ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Experiments ; Flagella ; Flagella - physiology ; Fumarates - metabolism ; Integration ; Metabolism ; Metabolism - physiology ; Metabolites ; Microbiology ; Microbiology/Microbial Physiology and Metabolism ; Models, Biological ; Motility ; Physiological aspects ; Repellents ; Salmonella typhimurium - metabolism ; Salmonella typhimurium - physiology ; Signal transduction ; Systems Biology ; Veins</subject><ispartof>PLoS computational biology, 2010-12, Vol.6 (12), p.e1001004-e1001004</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Egbert et al. 2010</rights><rights>2010 Egbert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Egbert MD, Barandiaran XE, Di Paolo EA (2010) A Minimal Model of Metabolism-Based Chemotaxis. PLoS Comput Biol 6(12): e1001004. doi:10.1371/journal.pcbi.1001004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-6def96f90941f1e10bd9065344d4ae4d7bf4cb75decbb78fd2c716772e3d48a3</citedby><cites>FETCH-LOGICAL-c730t-6def96f90941f1e10bd9065344d4ae4d7bf4cb75decbb78fd2c716772e3d48a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000427/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000427/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21170312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Egbert, Matthew D</creatorcontrib><creatorcontrib>Barandiaran, Xabier E</creatorcontrib><creatorcontrib>Di Paolo, Ezequiel A</creatorcontrib><title>A minimal model of metabolism-based chemotaxis</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.</description><subject>Adaptability</subject><subject>Attention</subject><subject>Attractants</subject><subject>Bacteria</subject><subject>Bacterial Physiological Phenomena</subject><subject>Behavior</subject><subject>Cell Biology/Chemical Biology of the Cell</subject><subject>Chemotaxis</subject><subject>Chemotaxis - physiology</subject><subject>Computational Biology/Metabolic Networks</subject><subject>Computational Biology/Systems Biology</subject><subject>Computer applications</subject><subject>E coli</subject><subject>Environmental conditions</subject><subject>Environmental effects</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Experiments</subject><subject>Flagella</subject><subject>Flagella - physiology</subject><subject>Fumarates - metabolism</subject><subject>Integration</subject><subject>Metabolism</subject><subject>Metabolism - physiology</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Microbiology/Microbial Physiology and Metabolism</subject><subject>Models, Biological</subject><subject>Motility</subject><subject>Physiological aspects</subject><subject>Repellents</subject><subject>Salmonella typhimurium - metabolism</subject><subject>Salmonella typhimurium - physiology</subject><subject>Signal transduction</subject><subject>Systems Biology</subject><subject>Veins</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt2L1DAQwIMo3rn6H4gu-CA-tCZN0rQvB8vhx8KhoPce8jHZy5I2a9PK-d-bdXvHFQSRCWSY_GYm84HQS4JLQgV5v4_T0KtQHoz2JcE4H_YInRPOaSEobx4_0M_Qs5T2GGe1rZ-is4oQgSmpzlG5WXe-950K6y5aCOvo1h2MSsfgU1dolcCuzQ10cVS3Pj1HT5wKCV7M9wpdf_xwffm5uPr6aXu5uSqMoHgsaguurV2LW0YcAYK1bXHNKWOWKWBWaMeMFtyC0Vo0zlZGkFqICqhljaIr9PoU9hBiknOlSRKapWE1x5nYnggb1V4ehlzB8EtG5eUfQxx2Ug2jNwEkcwZTpQVuXcOIwboyFaYNrhVUguQPr9DFnG3SHVgD_TiosAi6fOn9jdzFn5Li3PPqGODtHGCIPyZIo-x8MhCC6iFOSTYNxYTXgv-brLBoBON1Jt-cyJ3KNfjexZzaHGm5qRhvOc0DzFT5FyqLhc6b2IPz2b5weLdwyMwIt-NOTSnJ7fdv_8F-WbLsxJohpjSAu28fwfK4r3dTlMd9lfO-ZrdXD1t_73S3oPQ3NjPkeg</recordid><startdate>20101202</startdate><enddate>20101202</enddate><creator>Egbert, Matthew D</creator><creator>Barandiaran, Xabier E</creator><creator>Di Paolo, Ezequiel A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101202</creationdate><title>A minimal model of metabolism-based chemotaxis</title><author>Egbert, Matthew D ; Barandiaran, Xabier E ; Di Paolo, Ezequiel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-6def96f90941f1e10bd9065344d4ae4d7bf4cb75decbb78fd2c716772e3d48a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptability</topic><topic>Attention</topic><topic>Attractants</topic><topic>Bacteria</topic><topic>Bacterial Physiological Phenomena</topic><topic>Behavior</topic><topic>Cell Biology/Chemical Biology of the Cell</topic><topic>Chemotaxis</topic><topic>Chemotaxis - physiology</topic><topic>Computational Biology/Metabolic Networks</topic><topic>Computational Biology/Systems Biology</topic><topic>Computer applications</topic><topic>E coli</topic><topic>Environmental conditions</topic><topic>Environmental effects</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Experiments</topic><topic>Flagella</topic><topic>Flagella - physiology</topic><topic>Fumarates - metabolism</topic><topic>Integration</topic><topic>Metabolism</topic><topic>Metabolism - physiology</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Microbiology/Microbial Physiology and Metabolism</topic><topic>Models, Biological</topic><topic>Motility</topic><topic>Physiological aspects</topic><topic>Repellents</topic><topic>Salmonella typhimurium - metabolism</topic><topic>Salmonella typhimurium - physiology</topic><topic>Signal transduction</topic><topic>Systems Biology</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egbert, Matthew D</creatorcontrib><creatorcontrib>Barandiaran, Xabier E</creatorcontrib><creatorcontrib>Di Paolo, Ezequiel A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egbert, Matthew D</au><au>Barandiaran, Xabier E</au><au>Di Paolo, Ezequiel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A minimal model of metabolism-based chemotaxis</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-12-02</date><risdate>2010</risdate><volume>6</volume><issue>12</issue><spage>e1001004</spage><epage>e1001004</epage><pages>e1001004-e1001004</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21170312</pmid><doi>10.1371/journal.pcbi.1001004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-12, Vol.6 (12), p.e1001004-e1001004
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313184650
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Adaptability
Attention
Attractants
Bacteria
Bacterial Physiological Phenomena
Behavior
Cell Biology/Chemical Biology of the Cell
Chemotaxis
Chemotaxis - physiology
Computational Biology/Metabolic Networks
Computational Biology/Systems Biology
Computer applications
E coli
Environmental conditions
Environmental effects
Escherichia coli - metabolism
Escherichia coli - physiology
Experiments
Flagella
Flagella - physiology
Fumarates - metabolism
Integration
Metabolism
Metabolism - physiology
Metabolites
Microbiology
Microbiology/Microbial Physiology and Metabolism
Models, Biological
Motility
Physiological aspects
Repellents
Salmonella typhimurium - metabolism
Salmonella typhimurium - physiology
Signal transduction
Systems Biology
Veins
title A minimal model of metabolism-based chemotaxis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20minimal%20model%20of%20metabolism-based%20chemotaxis&rft.jtitle=PLoS%20computational%20biology&rft.au=Egbert,%20Matthew%20D&rft.date=2010-12-02&rft.volume=6&rft.issue=12&rft.spage=e1001004&rft.epage=e1001004&rft.pages=e1001004-e1001004&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1001004&rft_dat=%3Cgale_plos_%3EA245953031%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=820787456&rft_id=info:pmid/21170312&rft_galeid=A245953031&rft_doaj_id=oai_doaj_org_article_4fc03ab709f841c0b2c203806ae271c7&rfr_iscdi=true