Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait

Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-12, Vol.6 (12), p.e1001033-e1001033
Hauptverfasser: Zhang, Jie, Zhang, Kai, Feng, Jianfeng, Small, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1001033
container_issue 12
container_start_page e1001033
container_title PLoS computational biology
container_volume 6
creator Zhang, Jie
Zhang, Kai
Feng, Jianfeng
Small, Michael
description Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.
doi_str_mv 10.1371/journal.pcbi.1001033
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A245953050</galeid><doaj_id>oai_doaj_org_article_94a6095b61f04262953145742689431c</doaj_id><sourcerecordid>A245953050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-1602d01b8a5b753b15eb2f7f89a3d9b882ac49edf1d5bf90defd029f3071d2333</originalsourceid><addsrcrecordid>eNqVkktv1DAQgCMEoqXwDxBEcEAcdvEjjmMOSFXFY6UKpAJHZDl-bLxK7GA7FcuvxyHbqitxQXOYsf3NwzNTFE8hWENM4Zudn4IT_XqUrV1DACDA-F5xCgnBK4pJc_-OfVI8inEHQDZZ_bA4QRA2lAF6Wvy46vapG6ws1d6JrGMpnCrj3skueGd_i2S9K6-tKJUdtIv5JHqb9mXQapLz49tSjGNv5UImX3bTIFy5FTY9Lh4Y0Uf95KDPiu8f3n-7-LS6_PJxc3F-uZIUkbSCNUAKwLYRpKUEt5DoFhlqGiawYm3TICErppWBirSGAaWNAogZDChUCGN8Vjxf4o69j_zQmcghztJUhFSZ2CyE8mLHx2AHEfbcC8v_Xviw5SIkK3vNWSVqwEhbQwMqVCNGMKwIzWbDKgxljvXukG1qB62kdimI_ijo8YuzHd_6a45BrprNxbxYAviYLI_SJi076Z3TMnFYI4oAy9CrQ5bgf046Jj7YKHXfC6f9FHmDIGG0ZvPvXy7kVuTyrTM-Z5Uzzc9RRXL9gIBMrf9BZVE6j907bWy-P3J4feSQmaR_pa2YYuSbr1f_wX4-ZquFlcHHGLS57RwEfF7tmwHyebX5YbWz27O7Xb91utll_Ae2ePRy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821597693</pqid></control><display><type>article</type><title>Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Jie ; Zhang, Kai ; Feng, Jianfeng ; Small, Michael</creator><contributor>Kurths, Jürgen</contributor><creatorcontrib>Zhang, Jie ; Zhang, Kai ; Feng, Jianfeng ; Small, Michael ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Kurths, Jürgen</creatorcontrib><description>Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1001033</identifier><identifier>PMID: 21187907</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ankle ; Ankle - physiology ; BASIC BIOLOGICAL SCIENCES ; Biochemistry &amp; Molecular Biology ; Biomechanical Phenomena ; Blood pressure ; Computational Biology - methods ; Feedback ; Fourier analysis ; Fourier transforms ; Gait - physiology ; Humans ; Knee - physiology ; Mathematical &amp; Computational Biology ; Methods ; Models, Biological ; Nervous system ; Neural transmission ; Noise ; Physics/Interdisciplinary Physics ; Physiological aspects ; Signal processing ; Studies ; System theory ; Walking ; Walking - physiology</subject><ispartof>PLoS computational biology, 2010-12, Vol.6 (12), p.e1001033-e1001033</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010</rights><rights>2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zhang J, Zhang K, Feng J, Small M (2010) Rhythmic Dynamics and Synchronization via Dimensionality Reduction: Application to Human Gait. PLoS Comput Biol 6(12): e1001033. doi:10.1371/journal.pcbi.1001033</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-1602d01b8a5b753b15eb2f7f89a3d9b882ac49edf1d5bf90defd029f3071d2333</citedby><cites>FETCH-LOGICAL-c725t-1602d01b8a5b753b15eb2f7f89a3d9b882ac49edf1d5bf90defd029f3071d2333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002994/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002994/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21187907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627209$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Kurths, Jürgen</contributor><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Feng, Jianfeng</creatorcontrib><creatorcontrib>Small, Michael</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.</description><subject>Ankle</subject><subject>Ankle - physiology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biomechanical Phenomena</subject><subject>Blood pressure</subject><subject>Computational Biology - methods</subject><subject>Feedback</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gait - physiology</subject><subject>Humans</subject><subject>Knee - physiology</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Nervous system</subject><subject>Neural transmission</subject><subject>Noise</subject><subject>Physics/Interdisciplinary Physics</subject><subject>Physiological aspects</subject><subject>Signal processing</subject><subject>Studies</subject><subject>System theory</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQgCMEoqXwDxBEcEAcdvEjjmMOSFXFY6UKpAJHZDl-bLxK7GA7FcuvxyHbqitxQXOYsf3NwzNTFE8hWENM4Zudn4IT_XqUrV1DACDA-F5xCgnBK4pJc_-OfVI8inEHQDZZ_bA4QRA2lAF6Wvy46vapG6ws1d6JrGMpnCrj3skueGd_i2S9K6-tKJUdtIv5JHqb9mXQapLz49tSjGNv5UImX3bTIFy5FTY9Lh4Y0Uf95KDPiu8f3n-7-LS6_PJxc3F-uZIUkbSCNUAKwLYRpKUEt5DoFhlqGiawYm3TICErppWBirSGAaWNAogZDChUCGN8Vjxf4o69j_zQmcghztJUhFSZ2CyE8mLHx2AHEfbcC8v_Xviw5SIkK3vNWSVqwEhbQwMqVCNGMKwIzWbDKgxljvXukG1qB62kdimI_ijo8YuzHd_6a45BrprNxbxYAviYLI_SJi076Z3TMnFYI4oAy9CrQ5bgf046Jj7YKHXfC6f9FHmDIGG0ZvPvXy7kVuTyrTM-Z5Uzzc9RRXL9gIBMrf9BZVE6j907bWy-P3J4feSQmaR_pa2YYuSbr1f_wX4-ZquFlcHHGLS57RwEfF7tmwHyebX5YbWz27O7Xb91utll_Ae2ePRy</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Zhang, Jie</creator><creator>Zhang, Kai</creator><creator>Feng, Jianfeng</creator><creator>Small, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101201</creationdate><title>Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait</title><author>Zhang, Jie ; Zhang, Kai ; Feng, Jianfeng ; Small, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-1602d01b8a5b753b15eb2f7f89a3d9b882ac49edf1d5bf90defd029f3071d2333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ankle</topic><topic>Ankle - physiology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biomechanical Phenomena</topic><topic>Blood pressure</topic><topic>Computational Biology - methods</topic><topic>Feedback</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gait - physiology</topic><topic>Humans</topic><topic>Knee - physiology</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Nervous system</topic><topic>Neural transmission</topic><topic>Noise</topic><topic>Physics/Interdisciplinary Physics</topic><topic>Physiological aspects</topic><topic>Signal processing</topic><topic>Studies</topic><topic>System theory</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Feng, Jianfeng</creatorcontrib><creatorcontrib>Small, Michael</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Zhang, Kai</au><au>Feng, Jianfeng</au><au>Small, Michael</au><au>Kurths, Jürgen</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>6</volume><issue>12</issue><spage>e1001033</spage><epage>e1001033</epage><pages>e1001033-e1001033</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21187907</pmid><doi>10.1371/journal.pcbi.1001033</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-12, Vol.6 (12), p.e1001033-e1001033
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313184554
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Ankle
Ankle - physiology
BASIC BIOLOGICAL SCIENCES
Biochemistry & Molecular Biology
Biomechanical Phenomena
Blood pressure
Computational Biology - methods
Feedback
Fourier analysis
Fourier transforms
Gait - physiology
Humans
Knee - physiology
Mathematical & Computational Biology
Methods
Models, Biological
Nervous system
Neural transmission
Noise
Physics/Interdisciplinary Physics
Physiological aspects
Signal processing
Studies
System theory
Walking
Walking - physiology
title Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhythmic%20dynamics%20and%20synchronization%20via%20dimensionality%20reduction:%20application%20to%20human%20gait&rft.jtitle=PLoS%20computational%20biology&rft.au=Zhang,%20Jie&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2010-12-01&rft.volume=6&rft.issue=12&rft.spage=e1001033&rft.epage=e1001033&rft.pages=e1001033-e1001033&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1001033&rft_dat=%3Cgale_plos_%3EA245953050%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821597693&rft_id=info:pmid/21187907&rft_galeid=A245953050&rft_doaj_id=oai_doaj_org_article_94a6095b61f04262953145742689431c&rfr_iscdi=true