Self-organization of muscle cell structure and function

The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2011-02, Vol.7 (2), p.e1001088-e1001088
Hauptverfasser: Grosberg, Anna, Kuo, Po-Ling, Guo, Chin-Lin, Geisse, Nicholas A, Bray, Mark-Anthony, Adams, William J, Sheehy, Sean P, Parker, Kevin Kit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1001088
container_issue 2
container_start_page e1001088
container_title PLoS computational biology
container_volume 7
creator Grosberg, Anna
Kuo, Po-Ling
Guo, Chin-Lin
Geisse, Nicholas A
Bray, Mark-Anthony
Adams, William J
Sheehy, Sean P
Parker, Kevin Kit
description The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.
doi_str_mv 10.1371/journal.pcbi.1001088
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A250677735</galeid><doaj_id>oai_doaj_org_article_f8428b0397254601a1f6926d0abcb124</doaj_id><sourcerecordid>A250677735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</originalsourceid><addsrcrecordid>eNpVUk1v1DAQtRCIloV_gCASh56yePwROxekqqJQqRIH4GxNHHvxKhsvdlIJfj0Om1atfPDY8-bNvJkh5C3QLXAFH_dxTiMO26PtwhYoBar1M3IOUvJacamfP7LPyKuc95QWs21ekjMGvKVMNedEfXeDr2Pa4Rj-4hTiWEVfHeZsB1dZNwxVntJspzm5Cse-8vNoF9Rr8sLjkN2b9d6Qn9eff1x9rW-_fbm5urytrWRyqr1E7xnjWoHWDbK2GJI7KTTXXSdA89YJ5lpEKbzkoHQPurwlwOLxfEPen3iPQ8xm1ZwN8HK0EEXghtycEH3EvTmmcMD0x0QM5v9HkWYwTaHoMV4LpjvKW8WkaCgg-KZlTU-xsx0wUbg-rdnm7uB668Yp4fCE9KlnDL_MLt4ZToVQDS8EFytBir9nlydzCHlpI44uztlo2SjFNV9SfTghd1gqC6OPhdAuaHPJJC2wMriCEieUTTHn5PxDLUDNsgb3LTHLGph1DUrYu8c6HoLu587_AXMGrgQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856773834</pqid></control><display><type>article</type><title>Self-organization of muscle cell structure and function</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Grosberg, Anna ; Kuo, Po-Ling ; Guo, Chin-Lin ; Geisse, Nicholas A ; Bray, Mark-Anthony ; Adams, William J ; Sheehy, Sean P ; Parker, Kevin Kit</creator><creatorcontrib>Grosberg, Anna ; Kuo, Po-Ling ; Guo, Chin-Lin ; Geisse, Nicholas A ; Bray, Mark-Anthony ; Adams, William J ; Sheehy, Sean P ; Parker, Kevin Kit</creatorcontrib><description>The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1001088</identifier><identifier>PMID: 21390276</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actins - metabolism ; Animals ; Architectural engineering ; Biophysics/Cell Signaling and Trafficking Structures ; Biophysics/Experimental Biophysical Methods ; Boundary conditions ; Cardiomyocytes ; Cell Biology/Cell Adhesion ; Cell Biology/Cytoskeleton ; Cell Biology/Extra-Cellular Matrix ; Cell culture ; Cells, Cultured ; Computer Simulation ; Cytoskeleton ; Cytoskeleton - metabolism ; Cytoskeleton - physiology ; Experiments ; Focal Adhesions - chemistry ; Focal Adhesions - physiology ; Immunohistochemistry ; Mathematics ; Models, Biological ; Muscle cells ; Muscle Contraction - physiology ; Muscular system ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Myofibrils - chemistry ; Myofibrils - metabolism ; Myofibrils - physiology ; Physiology/Cardiovascular Physiology and Circulation ; Physiology/Morphogenesis and Cell Biology ; Physiology/Muscle and Connective Tissue ; Physiology/Pattern Formation ; Proteins ; Rats ; Rats, Sprague-Dawley ; Sarcomeres - metabolism ; Sarcomeres - physiology ; Structure ; Studies ; Symmetry</subject><ispartof>PLoS computational biology, 2011-02, Vol.7 (2), p.e1001088-e1001088</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Grosberg et al. 2011</rights><rights>2011 Grosberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Grosberg A, Kuo P-L, Guo C-L, Geisse NA, Bray M-A, et al. (2011) Self-Organization of Muscle Cell Structure and Function. PLoS Comput Biol 7(2): e1001088. doi:10.1371/journal.pcbi.1001088</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</citedby><cites>FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21390276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grosberg, Anna</creatorcontrib><creatorcontrib>Kuo, Po-Ling</creatorcontrib><creatorcontrib>Guo, Chin-Lin</creatorcontrib><creatorcontrib>Geisse, Nicholas A</creatorcontrib><creatorcontrib>Bray, Mark-Anthony</creatorcontrib><creatorcontrib>Adams, William J</creatorcontrib><creatorcontrib>Sheehy, Sean P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><title>Self-organization of muscle cell structure and function</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.</description><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Architectural engineering</subject><subject>Biophysics/Cell Signaling and Trafficking Structures</subject><subject>Biophysics/Experimental Biophysical Methods</subject><subject>Boundary conditions</subject><subject>Cardiomyocytes</subject><subject>Cell Biology/Cell Adhesion</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Cell Biology/Extra-Cellular Matrix</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Computer Simulation</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Cytoskeleton - physiology</subject><subject>Experiments</subject><subject>Focal Adhesions - chemistry</subject><subject>Focal Adhesions - physiology</subject><subject>Immunohistochemistry</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Muscle cells</subject><subject>Muscle Contraction - physiology</subject><subject>Muscular system</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Myofibrils - chemistry</subject><subject>Myofibrils - metabolism</subject><subject>Myofibrils - physiology</subject><subject>Physiology/Cardiovascular Physiology and Circulation</subject><subject>Physiology/Morphogenesis and Cell Biology</subject><subject>Physiology/Muscle and Connective Tissue</subject><subject>Physiology/Pattern Formation</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sarcomeres - metabolism</subject><subject>Sarcomeres - physiology</subject><subject>Structure</subject><subject>Studies</subject><subject>Symmetry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUk1v1DAQtRCIloV_gCASh56yePwROxekqqJQqRIH4GxNHHvxKhsvdlIJfj0Om1atfPDY8-bNvJkh5C3QLXAFH_dxTiMO26PtwhYoBar1M3IOUvJacamfP7LPyKuc95QWs21ekjMGvKVMNedEfXeDr2Pa4Rj-4hTiWEVfHeZsB1dZNwxVntJspzm5Cse-8vNoF9Rr8sLjkN2b9d6Qn9eff1x9rW-_fbm5urytrWRyqr1E7xnjWoHWDbK2GJI7KTTXXSdA89YJ5lpEKbzkoHQPurwlwOLxfEPen3iPQ8xm1ZwN8HK0EEXghtycEH3EvTmmcMD0x0QM5v9HkWYwTaHoMV4LpjvKW8WkaCgg-KZlTU-xsx0wUbg-rdnm7uB668Yp4fCE9KlnDL_MLt4ZToVQDS8EFytBir9nlydzCHlpI44uztlo2SjFNV9SfTghd1gqC6OPhdAuaHPJJC2wMriCEieUTTHn5PxDLUDNsgb3LTHLGph1DUrYu8c6HoLu587_AXMGrgQ</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Grosberg, Anna</creator><creator>Kuo, Po-Ling</creator><creator>Guo, Chin-Lin</creator><creator>Geisse, Nicholas A</creator><creator>Bray, Mark-Anthony</creator><creator>Adams, William J</creator><creator>Sheehy, Sean P</creator><creator>Parker, Kevin Kit</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110201</creationdate><title>Self-organization of muscle cell structure and function</title><author>Grosberg, Anna ; Kuo, Po-Ling ; Guo, Chin-Lin ; Geisse, Nicholas A ; Bray, Mark-Anthony ; Adams, William J ; Sheehy, Sean P ; Parker, Kevin Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Architectural engineering</topic><topic>Biophysics/Cell Signaling and Trafficking Structures</topic><topic>Biophysics/Experimental Biophysical Methods</topic><topic>Boundary conditions</topic><topic>Cardiomyocytes</topic><topic>Cell Biology/Cell Adhesion</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Cell Biology/Extra-Cellular Matrix</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Computer Simulation</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Cytoskeleton - physiology</topic><topic>Experiments</topic><topic>Focal Adhesions - chemistry</topic><topic>Focal Adhesions - physiology</topic><topic>Immunohistochemistry</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Muscle cells</topic><topic>Muscle Contraction - physiology</topic><topic>Muscular system</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Myofibrils - chemistry</topic><topic>Myofibrils - metabolism</topic><topic>Myofibrils - physiology</topic><topic>Physiology/Cardiovascular Physiology and Circulation</topic><topic>Physiology/Morphogenesis and Cell Biology</topic><topic>Physiology/Muscle and Connective Tissue</topic><topic>Physiology/Pattern Formation</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sarcomeres - metabolism</topic><topic>Sarcomeres - physiology</topic><topic>Structure</topic><topic>Studies</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosberg, Anna</creatorcontrib><creatorcontrib>Kuo, Po-Ling</creatorcontrib><creatorcontrib>Guo, Chin-Lin</creatorcontrib><creatorcontrib>Geisse, Nicholas A</creatorcontrib><creatorcontrib>Bray, Mark-Anthony</creatorcontrib><creatorcontrib>Adams, William J</creatorcontrib><creatorcontrib>Sheehy, Sean P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosberg, Anna</au><au>Kuo, Po-Ling</au><au>Guo, Chin-Lin</au><au>Geisse, Nicholas A</au><au>Bray, Mark-Anthony</au><au>Adams, William J</au><au>Sheehy, Sean P</au><au>Parker, Kevin Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-organization of muscle cell structure and function</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>e1001088</spage><epage>e1001088</epage><pages>e1001088-e1001088</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21390276</pmid><doi>10.1371/journal.pcbi.1001088</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-02, Vol.7 (2), p.e1001088-e1001088
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313184455
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Actins - metabolism
Animals
Architectural engineering
Biophysics/Cell Signaling and Trafficking Structures
Biophysics/Experimental Biophysical Methods
Boundary conditions
Cardiomyocytes
Cell Biology/Cell Adhesion
Cell Biology/Cytoskeleton
Cell Biology/Extra-Cellular Matrix
Cell culture
Cells, Cultured
Computer Simulation
Cytoskeleton
Cytoskeleton - metabolism
Cytoskeleton - physiology
Experiments
Focal Adhesions - chemistry
Focal Adhesions - physiology
Immunohistochemistry
Mathematics
Models, Biological
Muscle cells
Muscle Contraction - physiology
Muscular system
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - physiology
Myofibrils - chemistry
Myofibrils - metabolism
Myofibrils - physiology
Physiology/Cardiovascular Physiology and Circulation
Physiology/Morphogenesis and Cell Biology
Physiology/Muscle and Connective Tissue
Physiology/Pattern Formation
Proteins
Rats
Rats, Sprague-Dawley
Sarcomeres - metabolism
Sarcomeres - physiology
Structure
Studies
Symmetry
title Self-organization of muscle cell structure and function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-organization%20of%20muscle%20cell%20structure%20and%20function&rft.jtitle=PLoS%20computational%20biology&rft.au=Grosberg,%20Anna&rft.date=2011-02-01&rft.volume=7&rft.issue=2&rft.spage=e1001088&rft.epage=e1001088&rft.pages=e1001088-e1001088&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1001088&rft_dat=%3Cgale_plos_%3EA250677735%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856773834&rft_id=info:pmid/21390276&rft_galeid=A250677735&rft_doaj_id=oai_doaj_org_article_f8428b0397254601a1f6926d0abcb124&rfr_iscdi=true