Self-organization of muscle cell structure and function
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the orga...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2011-02, Vol.7 (2), p.e1001088-e1001088 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1001088 |
---|---|
container_issue | 2 |
container_start_page | e1001088 |
container_title | PLoS computational biology |
container_volume | 7 |
creator | Grosberg, Anna Kuo, Po-Ling Guo, Chin-Lin Geisse, Nicholas A Bray, Mark-Anthony Adams, William J Sheehy, Sean P Parker, Kevin Kit |
description | The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton. |
doi_str_mv | 10.1371/journal.pcbi.1001088 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313184455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A250677735</galeid><doaj_id>oai_doaj_org_article_f8428b0397254601a1f6926d0abcb124</doaj_id><sourcerecordid>A250677735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</originalsourceid><addsrcrecordid>eNpVUk1v1DAQtRCIloV_gCASh56yePwROxekqqJQqRIH4GxNHHvxKhsvdlIJfj0Om1atfPDY8-bNvJkh5C3QLXAFH_dxTiMO26PtwhYoBar1M3IOUvJacamfP7LPyKuc95QWs21ekjMGvKVMNedEfXeDr2Pa4Rj-4hTiWEVfHeZsB1dZNwxVntJspzm5Cse-8vNoF9Rr8sLjkN2b9d6Qn9eff1x9rW-_fbm5urytrWRyqr1E7xnjWoHWDbK2GJI7KTTXXSdA89YJ5lpEKbzkoHQPurwlwOLxfEPen3iPQ8xm1ZwN8HK0EEXghtycEH3EvTmmcMD0x0QM5v9HkWYwTaHoMV4LpjvKW8WkaCgg-KZlTU-xsx0wUbg-rdnm7uB668Yp4fCE9KlnDL_MLt4ZToVQDS8EFytBir9nlydzCHlpI44uztlo2SjFNV9SfTghd1gqC6OPhdAuaHPJJC2wMriCEieUTTHn5PxDLUDNsgb3LTHLGph1DUrYu8c6HoLu587_AXMGrgQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856773834</pqid></control><display><type>article</type><title>Self-organization of muscle cell structure and function</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Grosberg, Anna ; Kuo, Po-Ling ; Guo, Chin-Lin ; Geisse, Nicholas A ; Bray, Mark-Anthony ; Adams, William J ; Sheehy, Sean P ; Parker, Kevin Kit</creator><creatorcontrib>Grosberg, Anna ; Kuo, Po-Ling ; Guo, Chin-Lin ; Geisse, Nicholas A ; Bray, Mark-Anthony ; Adams, William J ; Sheehy, Sean P ; Parker, Kevin Kit</creatorcontrib><description>The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1001088</identifier><identifier>PMID: 21390276</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actins - metabolism ; Animals ; Architectural engineering ; Biophysics/Cell Signaling and Trafficking Structures ; Biophysics/Experimental Biophysical Methods ; Boundary conditions ; Cardiomyocytes ; Cell Biology/Cell Adhesion ; Cell Biology/Cytoskeleton ; Cell Biology/Extra-Cellular Matrix ; Cell culture ; Cells, Cultured ; Computer Simulation ; Cytoskeleton ; Cytoskeleton - metabolism ; Cytoskeleton - physiology ; Experiments ; Focal Adhesions - chemistry ; Focal Adhesions - physiology ; Immunohistochemistry ; Mathematics ; Models, Biological ; Muscle cells ; Muscle Contraction - physiology ; Muscular system ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Myofibrils - chemistry ; Myofibrils - metabolism ; Myofibrils - physiology ; Physiology/Cardiovascular Physiology and Circulation ; Physiology/Morphogenesis and Cell Biology ; Physiology/Muscle and Connective Tissue ; Physiology/Pattern Formation ; Proteins ; Rats ; Rats, Sprague-Dawley ; Sarcomeres - metabolism ; Sarcomeres - physiology ; Structure ; Studies ; Symmetry</subject><ispartof>PLoS computational biology, 2011-02, Vol.7 (2), p.e1001088-e1001088</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Grosberg et al. 2011</rights><rights>2011 Grosberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Grosberg A, Kuo P-L, Guo C-L, Geisse NA, Bray M-A, et al. (2011) Self-Organization of Muscle Cell Structure and Function. PLoS Comput Biol 7(2): e1001088. doi:10.1371/journal.pcbi.1001088</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</citedby><cites>FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21390276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grosberg, Anna</creatorcontrib><creatorcontrib>Kuo, Po-Ling</creatorcontrib><creatorcontrib>Guo, Chin-Lin</creatorcontrib><creatorcontrib>Geisse, Nicholas A</creatorcontrib><creatorcontrib>Bray, Mark-Anthony</creatorcontrib><creatorcontrib>Adams, William J</creatorcontrib><creatorcontrib>Sheehy, Sean P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><title>Self-organization of muscle cell structure and function</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.</description><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Architectural engineering</subject><subject>Biophysics/Cell Signaling and Trafficking Structures</subject><subject>Biophysics/Experimental Biophysical Methods</subject><subject>Boundary conditions</subject><subject>Cardiomyocytes</subject><subject>Cell Biology/Cell Adhesion</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Cell Biology/Extra-Cellular Matrix</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Computer Simulation</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Cytoskeleton - physiology</subject><subject>Experiments</subject><subject>Focal Adhesions - chemistry</subject><subject>Focal Adhesions - physiology</subject><subject>Immunohistochemistry</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Muscle cells</subject><subject>Muscle Contraction - physiology</subject><subject>Muscular system</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Myofibrils - chemistry</subject><subject>Myofibrils - metabolism</subject><subject>Myofibrils - physiology</subject><subject>Physiology/Cardiovascular Physiology and Circulation</subject><subject>Physiology/Morphogenesis and Cell Biology</subject><subject>Physiology/Muscle and Connective Tissue</subject><subject>Physiology/Pattern Formation</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sarcomeres - metabolism</subject><subject>Sarcomeres - physiology</subject><subject>Structure</subject><subject>Studies</subject><subject>Symmetry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUk1v1DAQtRCIloV_gCASh56yePwROxekqqJQqRIH4GxNHHvxKhsvdlIJfj0Om1atfPDY8-bNvJkh5C3QLXAFH_dxTiMO26PtwhYoBar1M3IOUvJacamfP7LPyKuc95QWs21ekjMGvKVMNedEfXeDr2Pa4Rj-4hTiWEVfHeZsB1dZNwxVntJspzm5Cse-8vNoF9Rr8sLjkN2b9d6Qn9eff1x9rW-_fbm5urytrWRyqr1E7xnjWoHWDbK2GJI7KTTXXSdA89YJ5lpEKbzkoHQPurwlwOLxfEPen3iPQ8xm1ZwN8HK0EEXghtycEH3EvTmmcMD0x0QM5v9HkWYwTaHoMV4LpjvKW8WkaCgg-KZlTU-xsx0wUbg-rdnm7uB668Yp4fCE9KlnDL_MLt4ZToVQDS8EFytBir9nlydzCHlpI44uztlo2SjFNV9SfTghd1gqC6OPhdAuaHPJJC2wMriCEieUTTHn5PxDLUDNsgb3LTHLGph1DUrYu8c6HoLu587_AXMGrgQ</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Grosberg, Anna</creator><creator>Kuo, Po-Ling</creator><creator>Guo, Chin-Lin</creator><creator>Geisse, Nicholas A</creator><creator>Bray, Mark-Anthony</creator><creator>Adams, William J</creator><creator>Sheehy, Sean P</creator><creator>Parker, Kevin Kit</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110201</creationdate><title>Self-organization of muscle cell structure and function</title><author>Grosberg, Anna ; Kuo, Po-Ling ; Guo, Chin-Lin ; Geisse, Nicholas A ; Bray, Mark-Anthony ; Adams, William J ; Sheehy, Sean P ; Parker, Kevin Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f5aff223871886a2987153e54838bb41839e42e9aa54f53178d182e951139e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Architectural engineering</topic><topic>Biophysics/Cell Signaling and Trafficking Structures</topic><topic>Biophysics/Experimental Biophysical Methods</topic><topic>Boundary conditions</topic><topic>Cardiomyocytes</topic><topic>Cell Biology/Cell Adhesion</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Cell Biology/Extra-Cellular Matrix</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Computer Simulation</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Cytoskeleton - physiology</topic><topic>Experiments</topic><topic>Focal Adhesions - chemistry</topic><topic>Focal Adhesions - physiology</topic><topic>Immunohistochemistry</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Muscle cells</topic><topic>Muscle Contraction - physiology</topic><topic>Muscular system</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Myofibrils - chemistry</topic><topic>Myofibrils - metabolism</topic><topic>Myofibrils - physiology</topic><topic>Physiology/Cardiovascular Physiology and Circulation</topic><topic>Physiology/Morphogenesis and Cell Biology</topic><topic>Physiology/Muscle and Connective Tissue</topic><topic>Physiology/Pattern Formation</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sarcomeres - metabolism</topic><topic>Sarcomeres - physiology</topic><topic>Structure</topic><topic>Studies</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosberg, Anna</creatorcontrib><creatorcontrib>Kuo, Po-Ling</creatorcontrib><creatorcontrib>Guo, Chin-Lin</creatorcontrib><creatorcontrib>Geisse, Nicholas A</creatorcontrib><creatorcontrib>Bray, Mark-Anthony</creatorcontrib><creatorcontrib>Adams, William J</creatorcontrib><creatorcontrib>Sheehy, Sean P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosberg, Anna</au><au>Kuo, Po-Ling</au><au>Guo, Chin-Lin</au><au>Geisse, Nicholas A</au><au>Bray, Mark-Anthony</au><au>Adams, William J</au><au>Sheehy, Sean P</au><au>Parker, Kevin Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-organization of muscle cell structure and function</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>e1001088</spage><epage>e1001088</epage><pages>e1001088-e1001088</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21390276</pmid><doi>10.1371/journal.pcbi.1001088</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2011-02, Vol.7 (2), p.e1001088-e1001088 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313184455 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Actins - metabolism Animals Architectural engineering Biophysics/Cell Signaling and Trafficking Structures Biophysics/Experimental Biophysical Methods Boundary conditions Cardiomyocytes Cell Biology/Cell Adhesion Cell Biology/Cytoskeleton Cell Biology/Extra-Cellular Matrix Cell culture Cells, Cultured Computer Simulation Cytoskeleton Cytoskeleton - metabolism Cytoskeleton - physiology Experiments Focal Adhesions - chemistry Focal Adhesions - physiology Immunohistochemistry Mathematics Models, Biological Muscle cells Muscle Contraction - physiology Muscular system Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Myocytes, Cardiac - physiology Myofibrils - chemistry Myofibrils - metabolism Myofibrils - physiology Physiology/Cardiovascular Physiology and Circulation Physiology/Morphogenesis and Cell Biology Physiology/Muscle and Connective Tissue Physiology/Pattern Formation Proteins Rats Rats, Sprague-Dawley Sarcomeres - metabolism Sarcomeres - physiology Structure Studies Symmetry |
title | Self-organization of muscle cell structure and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-organization%20of%20muscle%20cell%20structure%20and%20function&rft.jtitle=PLoS%20computational%20biology&rft.au=Grosberg,%20Anna&rft.date=2011-02-01&rft.volume=7&rft.issue=2&rft.spage=e1001088&rft.epage=e1001088&rft.pages=e1001088-e1001088&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1001088&rft_dat=%3Cgale_plos_%3EA250677735%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856773834&rft_id=info:pmid/21390276&rft_galeid=A250677735&rft_doaj_id=oai_doaj_org_article_f8428b0397254601a1f6926d0abcb124&rfr_iscdi=true |