Activated membrane patches guide chemotactic cell motility

Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2011-06, Vol.7 (6), p.e1002044-e1002044
Hauptverfasser: Hecht, Inbal, Skoge, Monica L, Charest, Pascale G, Ben-Jacob, Eshel, Firtel, Richard A, Loomis, William F, Levine, Herbert, Rappel, Wouter-Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002044
container_issue 6
container_start_page e1002044
container_title PLoS computational biology
container_volume 7
creator Hecht, Inbal
Skoge, Monica L
Charest, Pascale G
Ben-Jacob, Eshel
Firtel, Richard A
Loomis, William F
Levine, Herbert
Rappel, Wouter-Jan
description Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.
doi_str_mv 10.1371/journal.pcbi.1002044
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313181388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A260943710</galeid><doaj_id>oai_doaj_org_article_afb2ea48273a404fadbf0be2a0267721</doaj_id><sourcerecordid>A260943710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-44c293107b7949975aead71ce5fb59345b000ea68f4ef871edad17b8a32f5a563</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRDkhjjs4mfscEBaVTxWqkDicbbGzjj1KomXOKnot8fLplX3iHzwePybv2fGUxQvKVlTrui7XZzHAbr13tmwpoQwIsSj4pxKyVeKS_34gX1WPEtpR0g26-ppccao4lpIfl6837gp3MCETdljb0cYsNzD5K4xle0cGiyz2ccJMuZKh11X5lPownT7vHjioUv4Ytkvil-fPv68_LK6-vZ5e7m5WrlKkWklhGM1p0RZVYu6VhIQGkUdSm9lzYW0hBCESnuBXiuKDTRUWQ2ceQmy4hfF66PuvovJLGUnQ3lemnKtM7E9Ek2EndmPoYfx1kQI5p8jjq2BMeffoQFvGYLQTHEQRHhorCcWGRBWKcVo1vqwvDbbHhuHwzRCdyJ6ejOEa9PGG8MpU5qSLPBmERjj7xnTZPqQDo3LrY1zMlpJxXgleSbXR7KFnFkYfMyCLq8G--DigD5k_4ZVpBb5xw_Sb08CMjPhn6mFOSWz_fH9P9ivp6w4sm6MKY3o78ulxByG7a7r5jBsZhm2HPbqYavug-6mi_8FsVfQ7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875723653</pqid></control><display><type>article</type><title>Activated membrane patches guide chemotactic cell motility</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hecht, Inbal ; Skoge, Monica L ; Charest, Pascale G ; Ben-Jacob, Eshel ; Firtel, Richard A ; Loomis, William F ; Levine, Herbert ; Rappel, Wouter-Jan</creator><contributor>Bourne, Philip E.</contributor><creatorcontrib>Hecht, Inbal ; Skoge, Monica L ; Charest, Pascale G ; Ben-Jacob, Eshel ; Firtel, Richard A ; Loomis, William F ; Levine, Herbert ; Rappel, Wouter-Jan ; Bourne, Philip E.</creatorcontrib><description>Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002044</identifier><identifier>PMID: 21738453</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cell membranes ; Cell Movement - physiology ; Cells ; Cellular signal transduction ; Chemotaxis - physiology ; Computer Simulation ; Dictyostelium - cytology ; Dictyostelium - physiology ; Guanosine Triphosphate ; Mechanics ; Microfluidic Analytical Techniques ; Models, Biological ; Motility ; Physiological aspects ; Proteins ; Pseudopodia - physiology ; ras Proteins ; Signal Transduction ; Single-Cell Analysis</subject><ispartof>PLoS computational biology, 2011-06, Vol.7 (6), p.e1002044-e1002044</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Hecht et al. 2011</rights><rights>2011 Hecht et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hecht I, Skoge ML, Charest PG, Ben-Jacob E, Firtel RA, et al. (2011) Activated Membrane Patches Guide Chemotactic Cell Motility. PLoS Comput Biol 7(6): e1002044. doi:10.1371/journal.pcbi.1002044</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-44c293107b7949975aead71ce5fb59345b000ea68f4ef871edad17b8a32f5a563</citedby><cites>FETCH-LOGICAL-c670t-44c293107b7949975aead71ce5fb59345b000ea68f4ef871edad17b8a32f5a563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127810/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127810/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21738453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bourne, Philip E.</contributor><creatorcontrib>Hecht, Inbal</creatorcontrib><creatorcontrib>Skoge, Monica L</creatorcontrib><creatorcontrib>Charest, Pascale G</creatorcontrib><creatorcontrib>Ben-Jacob, Eshel</creatorcontrib><creatorcontrib>Firtel, Richard A</creatorcontrib><creatorcontrib>Loomis, William F</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><title>Activated membrane patches guide chemotactic cell motility</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.</description><subject>Biology</subject><subject>Cell membranes</subject><subject>Cell Movement - physiology</subject><subject>Cells</subject><subject>Cellular signal transduction</subject><subject>Chemotaxis - physiology</subject><subject>Computer Simulation</subject><subject>Dictyostelium - cytology</subject><subject>Dictyostelium - physiology</subject><subject>Guanosine Triphosphate</subject><subject>Mechanics</subject><subject>Microfluidic Analytical Techniques</subject><subject>Models, Biological</subject><subject>Motility</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Pseudopodia - physiology</subject><subject>ras Proteins</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRDkhjjs4mfscEBaVTxWqkDicbbGzjj1KomXOKnot8fLplX3iHzwePybv2fGUxQvKVlTrui7XZzHAbr13tmwpoQwIsSj4pxKyVeKS_34gX1WPEtpR0g26-ppccao4lpIfl6837gp3MCETdljb0cYsNzD5K4xle0cGiyz2ccJMuZKh11X5lPownT7vHjioUv4Ytkvil-fPv68_LK6-vZ5e7m5WrlKkWklhGM1p0RZVYu6VhIQGkUdSm9lzYW0hBCESnuBXiuKDTRUWQ2ceQmy4hfF66PuvovJLGUnQ3lemnKtM7E9Ek2EndmPoYfx1kQI5p8jjq2BMeffoQFvGYLQTHEQRHhorCcWGRBWKcVo1vqwvDbbHhuHwzRCdyJ6ejOEa9PGG8MpU5qSLPBmERjj7xnTZPqQDo3LrY1zMlpJxXgleSbXR7KFnFkYfMyCLq8G--DigD5k_4ZVpBb5xw_Sb08CMjPhn6mFOSWz_fH9P9ivp6w4sm6MKY3o78ulxByG7a7r5jBsZhm2HPbqYavug-6mi_8FsVfQ7Q</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Hecht, Inbal</creator><creator>Skoge, Monica L</creator><creator>Charest, Pascale G</creator><creator>Ben-Jacob, Eshel</creator><creator>Firtel, Richard A</creator><creator>Loomis, William F</creator><creator>Levine, Herbert</creator><creator>Rappel, Wouter-Jan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110601</creationdate><title>Activated membrane patches guide chemotactic cell motility</title><author>Hecht, Inbal ; Skoge, Monica L ; Charest, Pascale G ; Ben-Jacob, Eshel ; Firtel, Richard A ; Loomis, William F ; Levine, Herbert ; Rappel, Wouter-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-44c293107b7949975aead71ce5fb59345b000ea68f4ef871edad17b8a32f5a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Cell membranes</topic><topic>Cell Movement - physiology</topic><topic>Cells</topic><topic>Cellular signal transduction</topic><topic>Chemotaxis - physiology</topic><topic>Computer Simulation</topic><topic>Dictyostelium - cytology</topic><topic>Dictyostelium - physiology</topic><topic>Guanosine Triphosphate</topic><topic>Mechanics</topic><topic>Microfluidic Analytical Techniques</topic><topic>Models, Biological</topic><topic>Motility</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Pseudopodia - physiology</topic><topic>ras Proteins</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hecht, Inbal</creatorcontrib><creatorcontrib>Skoge, Monica L</creatorcontrib><creatorcontrib>Charest, Pascale G</creatorcontrib><creatorcontrib>Ben-Jacob, Eshel</creatorcontrib><creatorcontrib>Firtel, Richard A</creatorcontrib><creatorcontrib>Loomis, William F</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hecht, Inbal</au><au>Skoge, Monica L</au><au>Charest, Pascale G</au><au>Ben-Jacob, Eshel</au><au>Firtel, Richard A</au><au>Loomis, William F</au><au>Levine, Herbert</au><au>Rappel, Wouter-Jan</au><au>Bourne, Philip E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated membrane patches guide chemotactic cell motility</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>7</volume><issue>6</issue><spage>e1002044</spage><epage>e1002044</epage><pages>e1002044-e1002044</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21738453</pmid><doi>10.1371/journal.pcbi.1002044</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-06, Vol.7 (6), p.e1002044-e1002044
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313181388
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biology
Cell membranes
Cell Movement - physiology
Cells
Cellular signal transduction
Chemotaxis - physiology
Computer Simulation
Dictyostelium - cytology
Dictyostelium - physiology
Guanosine Triphosphate
Mechanics
Microfluidic Analytical Techniques
Models, Biological
Motility
Physiological aspects
Proteins
Pseudopodia - physiology
ras Proteins
Signal Transduction
Single-Cell Analysis
title Activated membrane patches guide chemotactic cell motility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20membrane%20patches%20guide%20chemotactic%20cell%20motility&rft.jtitle=PLoS%20computational%20biology&rft.au=Hecht,%20Inbal&rft.date=2011-06-01&rft.volume=7&rft.issue=6&rft.spage=e1002044&rft.epage=e1002044&rft.pages=e1002044-e1002044&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002044&rft_dat=%3Cgale_plos_%3EA260943710%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875723653&rft_id=info:pmid/21738453&rft_galeid=A260943710&rft_doaj_id=oai_doaj_org_article_afb2ea48273a404fadbf0be2a0267721&rfr_iscdi=true