Assessing the relative stability of dimer interfaces in g protein-coupled receptors

Considerable evidence has accumulated in recent years suggesting that G protein-coupled receptors (GPCRs) associate in the plasma membrane to form homo- and/or heteromers. Nevertheless, the stoichiometry, fraction and lifetime of such receptor complexes in living cells remain topics of intense debat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2012-08, Vol.8 (8), p.e1002649-e1002649
Hauptverfasser: Johnston, Jennifer M, Wang, Hao, Provasi, Davide, Filizola, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1002649
container_issue 8
container_start_page e1002649
container_title PLoS computational biology
container_volume 8
creator Johnston, Jennifer M
Wang, Hao
Provasi, Davide
Filizola, Marta
description Considerable evidence has accumulated in recent years suggesting that G protein-coupled receptors (GPCRs) associate in the plasma membrane to form homo- and/or heteromers. Nevertheless, the stoichiometry, fraction and lifetime of such receptor complexes in living cells remain topics of intense debate. Motivated by experimental data suggesting differing stabilities for homomers of the cognate human β1- and β2-adrenergic receptors, we have carried out approximately 160 microseconds of biased molecular dynamics simulations to calculate the dimerization free energy of crystal structure-based models of these receptors, interacting at two interfaces that have often been implicated in GPCR association under physiological conditions. Specifically, results are presented for simulations of coarse-grained (MARTINI-based) and atomistic representations of each receptor, in homodimeric configurations with either transmembrane helices TM1/H8 or TM4/3 at the interface, in an explicit lipid bilayer. Our results support a definite contribution to the relative stability of GPCR dimers from both interface sequence and configuration. We conclude that β1- and β2-adrenergic receptor homodimers with TM1/H8 at the interface are more stable than those involving TM4/3, and that this might be reconciled with experimental studies by considering a model of oligomerization in which more stable TM1 homodimers diffuse through the membrane, transiently interacting with other protomers at interfaces involving other TM helices.
doi_str_mv 10.1371/journal.pcbi.1002649
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313181109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A302299029</galeid><doaj_id>oai_doaj_org_article_d1aa65b26ff0413295a1c2794abcfbff</doaj_id><sourcerecordid>A302299029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c699t-95b85225313f9642cb768e0383d6bc67ed0e20e7093f2a33e40856d05eb4ad1e3</originalsourceid><addsrcrecordid>eNqVUstu1DAUjRCItgN_gCASm7LI4EfsxJtKo4rHSBVIFNaW41ynHiVxsJ2K_j0eJq06iA3ywlfX55z78MmyVxitMa3w-52b_aj69aQbu8YIEV6KJ9kpZowWFWX100fxSXYWwg6hFAr-PDshRGCOEDvNrjchQAh27PJ4A7mHXkV7C3mIqrG9jXe5M3lrB_C5HSN4ozSEFOZdPnkXwY6FdvPUQ5u4GqbofHiRPTOqD_ByuVfZj48fvl9-Lq6-ftpebq4KzYWIhWBNzQhhFFMjeEl0U_EaEK1pyxvNK2gREAQVEtQQRSmUqGa8RQyaUrUY6Cp7c9Cdehfkso8gcRLENcaJt8q2B0Tr1E5O3g7K30mnrPyTcL6Tykere5AtVoqzhnBjUIkpEUxhTSpRqkabxpikdbFUm5sBWg1j9Ko_Ej1-Ge2N7NytpCVBgpRJ4HwR8O7nDCHKwQYNfa9GcHPqO30PRiUTNEHf_gX993TrA6pTaQA7Gpfq6nRaGKx2Ixib8huK0ncLRPaEd0eEhInwK3ZqDkFur7_9B_bLMbY8YLV3IXgwD1vBSO7Net--3JtVLmZNtNePN_pAuncn_Q0wB-Xs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313181109</pqid></control><display><type>article</type><title>Assessing the relative stability of dimer interfaces in g protein-coupled receptors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Johnston, Jennifer M ; Wang, Hao ; Provasi, Davide ; Filizola, Marta</creator><creatorcontrib>Johnston, Jennifer M ; Wang, Hao ; Provasi, Davide ; Filizola, Marta</creatorcontrib><description>Considerable evidence has accumulated in recent years suggesting that G protein-coupled receptors (GPCRs) associate in the plasma membrane to form homo- and/or heteromers. Nevertheless, the stoichiometry, fraction and lifetime of such receptor complexes in living cells remain topics of intense debate. Motivated by experimental data suggesting differing stabilities for homomers of the cognate human β1- and β2-adrenergic receptors, we have carried out approximately 160 microseconds of biased molecular dynamics simulations to calculate the dimerization free energy of crystal structure-based models of these receptors, interacting at two interfaces that have often been implicated in GPCR association under physiological conditions. Specifically, results are presented for simulations of coarse-grained (MARTINI-based) and atomistic representations of each receptor, in homodimeric configurations with either transmembrane helices TM1/H8 or TM4/3 at the interface, in an explicit lipid bilayer. Our results support a definite contribution to the relative stability of GPCR dimers from both interface sequence and configuration. We conclude that β1- and β2-adrenergic receptor homodimers with TM1/H8 at the interface are more stable than those involving TM4/3, and that this might be reconciled with experimental studies by considering a model of oligomerization in which more stable TM1 homodimers diffuse through the membrane, transiently interacting with other protomers at interfaces involving other TM helices.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002649</identifier><identifier>PMID: 22916005</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biomedical research ; Crystal structure ; Dimerization ; Experiments ; G proteins ; Humans ; Lipid Bilayers ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular Structure ; Physiological aspects ; Polymerase chain reaction ; Proteins ; Receptors, G-Protein-Coupled - chemistry ; Studies</subject><ispartof>PLoS computational biology, 2012-08, Vol.8 (8), p.e1002649-e1002649</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Johnston et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the Relative Stability of Dimer Interfaces in G Protein-Coupled Receptors. PLoS Comput Biol 8(8): e1002649. doi:10.1371/journal.pcbi.1002649</rights><rights>2012 Johnston et al 2012 Johnston et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c699t-95b85225313f9642cb768e0383d6bc67ed0e20e7093f2a33e40856d05eb4ad1e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420924/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420924/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22916005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnston, Jennifer M</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Provasi, Davide</creatorcontrib><creatorcontrib>Filizola, Marta</creatorcontrib><title>Assessing the relative stability of dimer interfaces in g protein-coupled receptors</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Considerable evidence has accumulated in recent years suggesting that G protein-coupled receptors (GPCRs) associate in the plasma membrane to form homo- and/or heteromers. Nevertheless, the stoichiometry, fraction and lifetime of such receptor complexes in living cells remain topics of intense debate. Motivated by experimental data suggesting differing stabilities for homomers of the cognate human β1- and β2-adrenergic receptors, we have carried out approximately 160 microseconds of biased molecular dynamics simulations to calculate the dimerization free energy of crystal structure-based models of these receptors, interacting at two interfaces that have often been implicated in GPCR association under physiological conditions. Specifically, results are presented for simulations of coarse-grained (MARTINI-based) and atomistic representations of each receptor, in homodimeric configurations with either transmembrane helices TM1/H8 or TM4/3 at the interface, in an explicit lipid bilayer. Our results support a definite contribution to the relative stability of GPCR dimers from both interface sequence and configuration. We conclude that β1- and β2-adrenergic receptor homodimers with TM1/H8 at the interface are more stable than those involving TM4/3, and that this might be reconciled with experimental studies by considering a model of oligomerization in which more stable TM1 homodimers diffuse through the membrane, transiently interacting with other protomers at interfaces involving other TM helices.</description><subject>Biology</subject><subject>Biomedical research</subject><subject>Crystal structure</subject><subject>Dimerization</subject><subject>Experiments</subject><subject>G proteins</subject><subject>Humans</subject><subject>Lipid Bilayers</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Physiological aspects</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Receptors, G-Protein-Coupled - chemistry</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVUstu1DAUjRCItgN_gCASm7LI4EfsxJtKo4rHSBVIFNaW41ynHiVxsJ2K_j0eJq06iA3ywlfX55z78MmyVxitMa3w-52b_aj69aQbu8YIEV6KJ9kpZowWFWX100fxSXYWwg6hFAr-PDshRGCOEDvNrjchQAh27PJ4A7mHXkV7C3mIqrG9jXe5M3lrB_C5HSN4ozSEFOZdPnkXwY6FdvPUQ5u4GqbofHiRPTOqD_ByuVfZj48fvl9-Lq6-ftpebq4KzYWIhWBNzQhhFFMjeEl0U_EaEK1pyxvNK2gREAQVEtQQRSmUqGa8RQyaUrUY6Cp7c9Cdehfkso8gcRLENcaJt8q2B0Tr1E5O3g7K30mnrPyTcL6Tykere5AtVoqzhnBjUIkpEUxhTSpRqkabxpikdbFUm5sBWg1j9Ko_Ej1-Ge2N7NytpCVBgpRJ4HwR8O7nDCHKwQYNfa9GcHPqO30PRiUTNEHf_gX993TrA6pTaQA7Gpfq6nRaGKx2Ixib8huK0ncLRPaEd0eEhInwK3ZqDkFur7_9B_bLMbY8YLV3IXgwD1vBSO7Net--3JtVLmZNtNePN_pAuncn_Q0wB-Xs</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Johnston, Jennifer M</creator><creator>Wang, Hao</creator><creator>Provasi, Davide</creator><creator>Filizola, Marta</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120801</creationdate><title>Assessing the relative stability of dimer interfaces in g protein-coupled receptors</title><author>Johnston, Jennifer M ; Wang, Hao ; Provasi, Davide ; Filizola, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c699t-95b85225313f9642cb768e0383d6bc67ed0e20e7093f2a33e40856d05eb4ad1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biology</topic><topic>Biomedical research</topic><topic>Crystal structure</topic><topic>Dimerization</topic><topic>Experiments</topic><topic>G proteins</topic><topic>Humans</topic><topic>Lipid Bilayers</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Physiological aspects</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Receptors, G-Protein-Coupled - chemistry</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Jennifer M</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Provasi, Davide</creatorcontrib><creatorcontrib>Filizola, Marta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Jennifer M</au><au>Wang, Hao</au><au>Provasi, Davide</au><au>Filizola, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the relative stability of dimer interfaces in g protein-coupled receptors</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>8</volume><issue>8</issue><spage>e1002649</spage><epage>e1002649</epage><pages>e1002649-e1002649</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Considerable evidence has accumulated in recent years suggesting that G protein-coupled receptors (GPCRs) associate in the plasma membrane to form homo- and/or heteromers. Nevertheless, the stoichiometry, fraction and lifetime of such receptor complexes in living cells remain topics of intense debate. Motivated by experimental data suggesting differing stabilities for homomers of the cognate human β1- and β2-adrenergic receptors, we have carried out approximately 160 microseconds of biased molecular dynamics simulations to calculate the dimerization free energy of crystal structure-based models of these receptors, interacting at two interfaces that have often been implicated in GPCR association under physiological conditions. Specifically, results are presented for simulations of coarse-grained (MARTINI-based) and atomistic representations of each receptor, in homodimeric configurations with either transmembrane helices TM1/H8 or TM4/3 at the interface, in an explicit lipid bilayer. Our results support a definite contribution to the relative stability of GPCR dimers from both interface sequence and configuration. We conclude that β1- and β2-adrenergic receptor homodimers with TM1/H8 at the interface are more stable than those involving TM4/3, and that this might be reconciled with experimental studies by considering a model of oligomerization in which more stable TM1 homodimers diffuse through the membrane, transiently interacting with other protomers at interfaces involving other TM helices.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22916005</pmid><doi>10.1371/journal.pcbi.1002649</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2012-08, Vol.8 (8), p.e1002649-e1002649
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313181109
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS)
subjects Biology
Biomedical research
Crystal structure
Dimerization
Experiments
G proteins
Humans
Lipid Bilayers
Molecular dynamics
Molecular Dynamics Simulation
Molecular Structure
Physiological aspects
Polymerase chain reaction
Proteins
Receptors, G-Protein-Coupled - chemistry
Studies
title Assessing the relative stability of dimer interfaces in g protein-coupled receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20relative%20stability%20of%20dimer%20interfaces%20in%20g%20protein-coupled%20receptors&rft.jtitle=PLoS%20computational%20biology&rft.au=Johnston,%20Jennifer%20M&rft.date=2012-08-01&rft.volume=8&rft.issue=8&rft.spage=e1002649&rft.epage=e1002649&rft.pages=e1002649-e1002649&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002649&rft_dat=%3Cgale_plos_%3EA302299029%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313181109&rft_id=info:pmid/22916005&rft_galeid=A302299029&rft_doaj_id=oai_doaj_org_article_d1aa65b26ff0413295a1c2794abcfbff&rfr_iscdi=true