Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive op...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2010-07, Vol.6 (7), p.e1000857-e1000857 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000857 |
---|---|
container_issue | 7 |
container_start_page | e1000857 |
container_title | PLoS computational biology |
container_volume | 6 |
creator | Nagengast, Arne J Braun, Daniel A Wolpert, Daniel M |
description | Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models. |
doi_str_mv | 10.1371/journal.pcbi.1000857 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313173351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A234063677</galeid><doaj_id>oai_doaj_org_article_c696cc47d2434dbaae178ca098298d21</doaj_id><sourcerecordid>A234063677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</originalsourceid><addsrcrecordid>eNqVUk1vEzEQXSEQLYF_gGBviEOCP9b27gWpqqBEqkAqcEOyZr3j1OlmHWxvRP893iatmhNCtuzx-L0Z-80UxWtKFpQr-mHtxzBAv9ia1i0oIaQW6klxSoXgc8VF_fSRfVK8iHFNSDYb-bw4YUQKledp8evKxZt5xCG65HZY-m1yG-hLi9i1YG5K44cUfF-CMX4cUiytD-WE98FtfMqHFq9h57IxDh1Oq8GQwA3p9mXxzEIf8dVhnxU_P3_6cf5lfvntYnl-djk3isg0ByUsoKCsYdi2RlrGSats03GwsmJGCWMawaoaK6FaC4pOfiuxZi21wPiseLuPu-191AdhoqY8D8W5oBmx3CM6D2u9zU-HcKs9OH3n8GGlISRnetRGNtKYSnWs4lXWAJCq2gBpatbUHZtifTxkG9sNdgazQNAfBT2-Gdy1XvmdZg2plJye--4QIPjfI8akNy4a7HsY0I9RK1EJwRoh_43kFaFU5MLOisUeuYL8BzdYn1ObPDrcuFxDtC77z1gmSC6VyoT3R4SpzvgnrWCMUS-_X_0H9usxttpjTfAxBrQPwlCip8a9r4-eGlcfGjfT3jwW9YF036n8L4Ow7Nk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734011500</pqid></control><display><type>article</type><title>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Nagengast, Arne J ; Braun, Daniel A ; Wolpert, Daniel M</creator><creatorcontrib>Nagengast, Arne J ; Braun, Daniel A ; Wolpert, Daniel M</creatorcontrib><description>Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000857</identifier><identifier>PMID: 20657657</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Analysis of Variance ; Biological control systems ; Computer Science/Systems and Control Theory ; Computer Simulation ; Cost control ; Decision making ; Expected values ; Experiments ; Feedback, Sensory - physiology ; Female ; Humans ; Linear Models ; Male ; Models, Biological ; Motor ability ; Neuroscience/Motor Systems ; Neuroscience/Psychology ; Neuroscience/Theoretical Neuroscience ; Noise ; Risk aversion ; Risk-Taking ; Studies ; Uncertainty</subject><ispartof>PLoS computational biology, 2010-07, Vol.6 (7), p.e1000857-e1000857</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Nagengast et al. 2010</rights><rights>2010 Nagengast et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nagengast AJ, Braun DA, Wolpert DM (2010) Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty. PLoS Comput Biol 6(7): e1000857. doi:10.1371/journal.pcbi.1000857</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</citedby><cites>FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20657657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagengast, Arne J</creatorcontrib><creatorcontrib>Braun, Daniel A</creatorcontrib><creatorcontrib>Wolpert, Daniel M</creatorcontrib><title>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Biological control systems</subject><subject>Computer Science/Systems and Control Theory</subject><subject>Computer Simulation</subject><subject>Cost control</subject><subject>Decision making</subject><subject>Expected values</subject><subject>Experiments</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Motor ability</subject><subject>Neuroscience/Motor Systems</subject><subject>Neuroscience/Psychology</subject><subject>Neuroscience/Theoretical Neuroscience</subject><subject>Noise</subject><subject>Risk aversion</subject><subject>Risk-Taking</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1vEzEQXSEQLYF_gGBviEOCP9b27gWpqqBEqkAqcEOyZr3j1OlmHWxvRP893iatmhNCtuzx-L0Z-80UxWtKFpQr-mHtxzBAv9ia1i0oIaQW6klxSoXgc8VF_fSRfVK8iHFNSDYb-bw4YUQKledp8evKxZt5xCG65HZY-m1yG-hLi9i1YG5K44cUfF-CMX4cUiytD-WE98FtfMqHFq9h57IxDh1Oq8GQwA3p9mXxzEIf8dVhnxU_P3_6cf5lfvntYnl-djk3isg0ByUsoKCsYdi2RlrGSats03GwsmJGCWMawaoaK6FaC4pOfiuxZi21wPiseLuPu-191AdhoqY8D8W5oBmx3CM6D2u9zU-HcKs9OH3n8GGlISRnetRGNtKYSnWs4lXWAJCq2gBpatbUHZtifTxkG9sNdgazQNAfBT2-Gdy1XvmdZg2plJye--4QIPjfI8akNy4a7HsY0I9RK1EJwRoh_43kFaFU5MLOisUeuYL8BzdYn1ObPDrcuFxDtC77z1gmSC6VyoT3R4SpzvgnrWCMUS-_X_0H9usxttpjTfAxBrQPwlCip8a9r4-eGlcfGjfT3jwW9YF036n8L4Ow7Nk</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Nagengast, Arne J</creator><creator>Braun, Daniel A</creator><creator>Wolpert, Daniel M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100701</creationdate><title>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</title><author>Nagengast, Arne J ; Braun, Daniel A ; Wolpert, Daniel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Biological control systems</topic><topic>Computer Science/Systems and Control Theory</topic><topic>Computer Simulation</topic><topic>Cost control</topic><topic>Decision making</topic><topic>Expected values</topic><topic>Experiments</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Motor ability</topic><topic>Neuroscience/Motor Systems</topic><topic>Neuroscience/Psychology</topic><topic>Neuroscience/Theoretical Neuroscience</topic><topic>Noise</topic><topic>Risk aversion</topic><topic>Risk-Taking</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagengast, Arne J</creatorcontrib><creatorcontrib>Braun, Daniel A</creatorcontrib><creatorcontrib>Wolpert, Daniel M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagengast, Arne J</au><au>Braun, Daniel A</au><au>Wolpert, Daniel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>6</volume><issue>7</issue><spage>e1000857</spage><epage>e1000857</epage><pages>e1000857-e1000857</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20657657</pmid><doi>10.1371/journal.pcbi.1000857</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2010-07, Vol.6 (7), p.e1000857-e1000857 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313173351 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adult Algorithms Analysis of Variance Biological control systems Computer Science/Systems and Control Theory Computer Simulation Cost control Decision making Expected values Experiments Feedback, Sensory - physiology Female Humans Linear Models Male Models, Biological Motor ability Neuroscience/Motor Systems Neuroscience/Psychology Neuroscience/Theoretical Neuroscience Noise Risk aversion Risk-Taking Studies Uncertainty |
title | Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-sensitive%20optimal%20feedback%20control%20accounts%20for%20sensorimotor%20behavior%20under%20uncertainty&rft.jtitle=PLoS%20computational%20biology&rft.au=Nagengast,%20Arne%20J&rft.date=2010-07-01&rft.volume=6&rft.issue=7&rft.spage=e1000857&rft.epage=e1000857&rft.pages=e1000857-e1000857&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000857&rft_dat=%3Cgale_plos_%3EA234063677%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734011500&rft_id=info:pmid/20657657&rft_galeid=A234063677&rft_doaj_id=oai_doaj_org_article_c696cc47d2434dbaae178ca098298d21&rfr_iscdi=true |