Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty

Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-07, Vol.6 (7), p.e1000857-e1000857
Hauptverfasser: Nagengast, Arne J, Braun, Daniel A, Wolpert, Daniel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000857
container_issue 7
container_start_page e1000857
container_title PLoS computational biology
container_volume 6
creator Nagengast, Arne J
Braun, Daniel A
Wolpert, Daniel M
description Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.
doi_str_mv 10.1371/journal.pcbi.1000857
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313173351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A234063677</galeid><doaj_id>oai_doaj_org_article_c696cc47d2434dbaae178ca098298d21</doaj_id><sourcerecordid>A234063677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</originalsourceid><addsrcrecordid>eNqVUk1vEzEQXSEQLYF_gGBviEOCP9b27gWpqqBEqkAqcEOyZr3j1OlmHWxvRP893iatmhNCtuzx-L0Z-80UxWtKFpQr-mHtxzBAv9ia1i0oIaQW6klxSoXgc8VF_fSRfVK8iHFNSDYb-bw4YUQKledp8evKxZt5xCG65HZY-m1yG-hLi9i1YG5K44cUfF-CMX4cUiytD-WE98FtfMqHFq9h57IxDh1Oq8GQwA3p9mXxzEIf8dVhnxU_P3_6cf5lfvntYnl-djk3isg0ByUsoKCsYdi2RlrGSats03GwsmJGCWMawaoaK6FaC4pOfiuxZi21wPiseLuPu-191AdhoqY8D8W5oBmx3CM6D2u9zU-HcKs9OH3n8GGlISRnetRGNtKYSnWs4lXWAJCq2gBpatbUHZtifTxkG9sNdgazQNAfBT2-Gdy1XvmdZg2plJye--4QIPjfI8akNy4a7HsY0I9RK1EJwRoh_43kFaFU5MLOisUeuYL8BzdYn1ObPDrcuFxDtC77z1gmSC6VyoT3R4SpzvgnrWCMUS-_X_0H9usxttpjTfAxBrQPwlCip8a9r4-eGlcfGjfT3jwW9YF036n8L4Ow7Nk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734011500</pqid></control><display><type>article</type><title>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Nagengast, Arne J ; Braun, Daniel A ; Wolpert, Daniel M</creator><creatorcontrib>Nagengast, Arne J ; Braun, Daniel A ; Wolpert, Daniel M</creatorcontrib><description>Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000857</identifier><identifier>PMID: 20657657</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Algorithms ; Analysis of Variance ; Biological control systems ; Computer Science/Systems and Control Theory ; Computer Simulation ; Cost control ; Decision making ; Expected values ; Experiments ; Feedback, Sensory - physiology ; Female ; Humans ; Linear Models ; Male ; Models, Biological ; Motor ability ; Neuroscience/Motor Systems ; Neuroscience/Psychology ; Neuroscience/Theoretical Neuroscience ; Noise ; Risk aversion ; Risk-Taking ; Studies ; Uncertainty</subject><ispartof>PLoS computational biology, 2010-07, Vol.6 (7), p.e1000857-e1000857</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Nagengast et al. 2010</rights><rights>2010 Nagengast et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nagengast AJ, Braun DA, Wolpert DM (2010) Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty. PLoS Comput Biol 6(7): e1000857. doi:10.1371/journal.pcbi.1000857</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</citedby><cites>FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20657657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagengast, Arne J</creatorcontrib><creatorcontrib>Braun, Daniel A</creatorcontrib><creatorcontrib>Wolpert, Daniel M</creatorcontrib><title>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Biological control systems</subject><subject>Computer Science/Systems and Control Theory</subject><subject>Computer Simulation</subject><subject>Cost control</subject><subject>Decision making</subject><subject>Expected values</subject><subject>Experiments</subject><subject>Feedback, Sensory - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Motor ability</subject><subject>Neuroscience/Motor Systems</subject><subject>Neuroscience/Psychology</subject><subject>Neuroscience/Theoretical Neuroscience</subject><subject>Noise</subject><subject>Risk aversion</subject><subject>Risk-Taking</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1vEzEQXSEQLYF_gGBviEOCP9b27gWpqqBEqkAqcEOyZr3j1OlmHWxvRP893iatmhNCtuzx-L0Z-80UxWtKFpQr-mHtxzBAv9ia1i0oIaQW6klxSoXgc8VF_fSRfVK8iHFNSDYb-bw4YUQKledp8evKxZt5xCG65HZY-m1yG-hLi9i1YG5K44cUfF-CMX4cUiytD-WE98FtfMqHFq9h57IxDh1Oq8GQwA3p9mXxzEIf8dVhnxU_P3_6cf5lfvntYnl-djk3isg0ByUsoKCsYdi2RlrGSats03GwsmJGCWMawaoaK6FaC4pOfiuxZi21wPiseLuPu-191AdhoqY8D8W5oBmx3CM6D2u9zU-HcKs9OH3n8GGlISRnetRGNtKYSnWs4lXWAJCq2gBpatbUHZtifTxkG9sNdgazQNAfBT2-Gdy1XvmdZg2plJye--4QIPjfI8akNy4a7HsY0I9RK1EJwRoh_43kFaFU5MLOisUeuYL8BzdYn1ObPDrcuFxDtC77z1gmSC6VyoT3R4SpzvgnrWCMUS-_X_0H9usxttpjTfAxBrQPwlCip8a9r4-eGlcfGjfT3jwW9YF036n8L4Ow7Nk</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Nagengast, Arne J</creator><creator>Braun, Daniel A</creator><creator>Wolpert, Daniel M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100701</creationdate><title>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</title><author>Nagengast, Arne J ; Braun, Daniel A ; Wolpert, Daniel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c706t-a75fae51292ebbc6f230b7f9d3af642c75cc95248e457bfa71af64f6e82b1fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Biological control systems</topic><topic>Computer Science/Systems and Control Theory</topic><topic>Computer Simulation</topic><topic>Cost control</topic><topic>Decision making</topic><topic>Expected values</topic><topic>Experiments</topic><topic>Feedback, Sensory - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Motor ability</topic><topic>Neuroscience/Motor Systems</topic><topic>Neuroscience/Psychology</topic><topic>Neuroscience/Theoretical Neuroscience</topic><topic>Noise</topic><topic>Risk aversion</topic><topic>Risk-Taking</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagengast, Arne J</creatorcontrib><creatorcontrib>Braun, Daniel A</creatorcontrib><creatorcontrib>Wolpert, Daniel M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagengast, Arne J</au><au>Braun, Daniel A</au><au>Wolpert, Daniel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>6</volume><issue>7</issue><spage>e1000857</spage><epage>e1000857</epage><pages>e1000857-e1000857</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20657657</pmid><doi>10.1371/journal.pcbi.1000857</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-07, Vol.6 (7), p.e1000857-e1000857
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313173351
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adult
Algorithms
Analysis of Variance
Biological control systems
Computer Science/Systems and Control Theory
Computer Simulation
Cost control
Decision making
Expected values
Experiments
Feedback, Sensory - physiology
Female
Humans
Linear Models
Male
Models, Biological
Motor ability
Neuroscience/Motor Systems
Neuroscience/Psychology
Neuroscience/Theoretical Neuroscience
Noise
Risk aversion
Risk-Taking
Studies
Uncertainty
title Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-sensitive%20optimal%20feedback%20control%20accounts%20for%20sensorimotor%20behavior%20under%20uncertainty&rft.jtitle=PLoS%20computational%20biology&rft.au=Nagengast,%20Arne%20J&rft.date=2010-07-01&rft.volume=6&rft.issue=7&rft.spage=e1000857&rft.epage=e1000857&rft.pages=e1000857-e1000857&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000857&rft_dat=%3Cgale_plos_%3EA234063677%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734011500&rft_id=info:pmid/20657657&rft_galeid=A234063677&rft_doaj_id=oai_doaj_org_article_c696cc47d2434dbaae178ca098298d21&rfr_iscdi=true