Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails

Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-06, Vol.6 (6), p.e1000829-e1000829
Hauptverfasser: Kasson, Peter M, Lindahl, Erik, Pande, Vijay S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000829
container_issue 6
container_start_page e1000829
container_title PLoS computational biology
container_volume 6
creator Kasson, Peter M
Lindahl, Erik
Pande, Vijay S
description Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.
doi_str_mv 10.1371/journal.pcbi.1000829
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313172953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A230685393</galeid><doaj_id>oai_doaj_org_article_4fe955802c194aa685ed1a1d7a9c59ab</doaj_id><sourcerecordid>A230685393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLeyGiMyZN0jQ3wrB-DSwKft2G0zSZzdppapLuuv_edDu7bEFYJBc9JM_7tnl7TpY9xWiFCcdvztzgO2hXvartCiOEqkLcyw4xY2TJCavu36oPskchnCGUSlE-zA4KxCpWFugwC-vodlYtvQ6uHaJ1XR7sbmhhLEPee91YFXPIo4cu2AmIEHVunM_PdbCqTfUQxoNGG9vpJq8vc-W6CEnoTNIafZG3trdNHsG24XH2wEAb9JP9c5H9-PD--_Gn5cmXj5vj9clSVaSMy6IoK45EWWrGDDKsFhRTwjjURNeEM-DGIEyNglJTUpc11BQx1BCEk0QRssieT75964Lc5xUkJmnxQrCR2ExE4-BM9t7uwF9KB1ZebTi_leDjeEVJjRaMVahQWFCAsmK6wYAbDkIxkb5pkb2avMKF7od65vbO_lxfuYVBUlEJkejXd9O_4qmsCiaKhL_dX2Wod7pRukv_o52p5iedPZVbdy6LSmCOeDJ4sTfw7vegQ5Q7G5RuW-i0G4LklJaiohzdTRJCOeclS-TRRG4hBWQ749Kr1UjLdUFQioiIMePVP6i0Gp0az3WpZ9L-TPByJhhbSf-JWxhCkJtvX_-D_Txn6cQq70Lw2tzEh5EcR-q6ReQ4UnI_Ukn27Hb0N6LrGSJ_AScbHnc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733477765</pqid></control><display><type>article</type><title>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</title><source>MEDLINE</source><source>PubMed Central(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>Public Library of Science (PLoS)</source><creator>Kasson, Peter M ; Lindahl, Erik ; Pande, Vijay S</creator><contributor>Jacobson, Matthew P.</contributor><creatorcontrib>Kasson, Peter M ; Lindahl, Erik ; Pande, Vijay S ; Jacobson, Matthew P.</creatorcontrib><description>Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000829</identifier><identifier>PMID: 20585620</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding proteins ; Biochemistry ; Biokemi ; Biophysics/Membrane Proteins and Energy Transduction ; Biophysics/Theory and Simulation ; Catalysis ; Cell membranes ; Chemistry ; Computational Biology/Molecular Dynamics ; Computer Simulation ; Distributed processing ; Experiments ; Health aspects ; Hemagglutinins, Viral - chemistry ; Hemagglutinins, Viral - metabolism ; Hydrophobic and Hydrophilic Interactions ; Influenza ; Kemi ; Lipids ; Membrane Fusion - physiology ; Membranes ; Models, Molecular ; Mutation ; NATURAL SCIENCES ; NATURVETENSKAP ; Orthomyxoviridae ; Peptides ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylethanolamines - chemistry ; Phosphatidylethanolamines - metabolism ; Physiological aspects ; Proteins ; Simulation ; Transport Vesicles - chemistry ; Transport Vesicles - metabolism ; Virology/Host Invasion and Cell Entry ; Viruses ; Water - chemistry</subject><ispartof>PLoS computational biology, 2010-06, Vol.6 (6), p.e1000829-e1000829</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Kasson et al. 2010</rights><rights>2010 Kasson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kasson PM, Lindahl E, Pande VS (2010) Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails. PLoS Comput Biol 6(6): e1000829. doi:10.1371/journal.pcbi.1000829</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</citedby><cites>FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891707/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891707/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20585620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-82592$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-49899$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Jacobson, Matthew P.</contributor><creatorcontrib>Kasson, Peter M</creatorcontrib><creatorcontrib>Lindahl, Erik</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><title>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.</description><subject>Binding proteins</subject><subject>Biochemistry</subject><subject>Biokemi</subject><subject>Biophysics/Membrane Proteins and Energy Transduction</subject><subject>Biophysics/Theory and Simulation</subject><subject>Catalysis</subject><subject>Cell membranes</subject><subject>Chemistry</subject><subject>Computational Biology/Molecular Dynamics</subject><subject>Computer Simulation</subject><subject>Distributed processing</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Hemagglutinins, Viral - chemistry</subject><subject>Hemagglutinins, Viral - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Influenza</subject><subject>Kemi</subject><subject>Lipids</subject><subject>Membrane Fusion - physiology</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Orthomyxoviridae</subject><subject>Peptides</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylethanolamines - chemistry</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Transport Vesicles - chemistry</subject><subject>Transport Vesicles - metabolism</subject><subject>Virology/Host Invasion and Cell Entry</subject><subject>Viruses</subject><subject>Water - chemistry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLeyGiMyZN0jQ3wrB-DSwKft2G0zSZzdppapLuuv_edDu7bEFYJBc9JM_7tnl7TpY9xWiFCcdvztzgO2hXvartCiOEqkLcyw4xY2TJCavu36oPskchnCGUSlE-zA4KxCpWFugwC-vodlYtvQ6uHaJ1XR7sbmhhLEPee91YFXPIo4cu2AmIEHVunM_PdbCqTfUQxoNGG9vpJq8vc-W6CEnoTNIafZG3trdNHsG24XH2wEAb9JP9c5H9-PD--_Gn5cmXj5vj9clSVaSMy6IoK45EWWrGDDKsFhRTwjjURNeEM-DGIEyNglJTUpc11BQx1BCEk0QRssieT75964Lc5xUkJmnxQrCR2ExE4-BM9t7uwF9KB1ZebTi_leDjeEVJjRaMVahQWFCAsmK6wYAbDkIxkb5pkb2avMKF7od65vbO_lxfuYVBUlEJkejXd9O_4qmsCiaKhL_dX2Wod7pRukv_o52p5iedPZVbdy6LSmCOeDJ4sTfw7vegQ5Q7G5RuW-i0G4LklJaiohzdTRJCOeclS-TRRG4hBWQ749Kr1UjLdUFQioiIMePVP6i0Gp0az3WpZ9L-TPByJhhbSf-JWxhCkJtvX_-D_Txn6cQq70Lw2tzEh5EcR-q6ReQ4UnI_Ukn27Hb0N6LrGSJ_AScbHnc</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Kasson, Peter M</creator><creator>Lindahl, Erik</creator><creator>Pande, Vijay S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope><scope>DOA</scope></search><sort><creationdate>20100601</creationdate><title>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</title><author>Kasson, Peter M ; Lindahl, Erik ; Pande, Vijay S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binding proteins</topic><topic>Biochemistry</topic><topic>Biokemi</topic><topic>Biophysics/Membrane Proteins and Energy Transduction</topic><topic>Biophysics/Theory and Simulation</topic><topic>Catalysis</topic><topic>Cell membranes</topic><topic>Chemistry</topic><topic>Computational Biology/Molecular Dynamics</topic><topic>Computer Simulation</topic><topic>Distributed processing</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Hemagglutinins, Viral - chemistry</topic><topic>Hemagglutinins, Viral - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Influenza</topic><topic>Kemi</topic><topic>Lipids</topic><topic>Membrane Fusion - physiology</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Orthomyxoviridae</topic><topic>Peptides</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylethanolamines - chemistry</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Transport Vesicles - chemistry</topic><topic>Transport Vesicles - metabolism</topic><topic>Virology/Host Invasion and Cell Entry</topic><topic>Viruses</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasson, Peter M</creatorcontrib><creatorcontrib>Lindahl, Erik</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasson, Peter M</au><au>Lindahl, Erik</au><au>Pande, Vijay S</au><au>Jacobson, Matthew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>6</volume><issue>6</issue><spage>e1000829</spage><epage>e1000829</epage><pages>e1000829-e1000829</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20585620</pmid><doi>10.1371/journal.pcbi.1000829</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-06, Vol.6 (6), p.e1000829-e1000829
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313172953
source MEDLINE; PubMed Central(OpenAccess); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; Public Library of Science (PLoS)
subjects Binding proteins
Biochemistry
Biokemi
Biophysics/Membrane Proteins and Energy Transduction
Biophysics/Theory and Simulation
Catalysis
Cell membranes
Chemistry
Computational Biology/Molecular Dynamics
Computer Simulation
Distributed processing
Experiments
Health aspects
Hemagglutinins, Viral - chemistry
Hemagglutinins, Viral - metabolism
Hydrophobic and Hydrophilic Interactions
Influenza
Kemi
Lipids
Membrane Fusion - physiology
Membranes
Models, Molecular
Mutation
NATURAL SCIENCES
NATURVETENSKAP
Orthomyxoviridae
Peptides
Phosphatidylcholines - chemistry
Phosphatidylcholines - metabolism
Phosphatidylethanolamines - chemistry
Phosphatidylethanolamines - metabolism
Physiological aspects
Proteins
Simulation
Transport Vesicles - chemistry
Transport Vesicles - metabolism
Virology/Host Invasion and Cell Entry
Viruses
Water - chemistry
title Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-resolution%20simulations%20predict%20a%20transition%20state%20for%20vesicle%20fusion%20defined%20by%20contact%20of%20a%20few%20lipid%20tails&rft.jtitle=PLoS%20computational%20biology&rft.au=Kasson,%20Peter%20M&rft.date=2010-06-01&rft.volume=6&rft.issue=6&rft.spage=e1000829&rft.epage=e1000829&rft.pages=e1000829-e1000829&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000829&rft_dat=%3Cgale_plos_%3EA230685393%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733477765&rft_id=info:pmid/20585620&rft_galeid=A230685393&rft_doaj_id=oai_doaj_org_article_4fe955802c194aa685ed1a1d7a9c59ab&rfr_iscdi=true