Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails
Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Her...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2010-06, Vol.6 (6), p.e1000829-e1000829 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000829 |
---|---|
container_issue | 6 |
container_start_page | e1000829 |
container_title | PLoS computational biology |
container_volume | 6 |
creator | Kasson, Peter M Lindahl, Erik Pande, Vijay S |
description | Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins. |
doi_str_mv | 10.1371/journal.pcbi.1000829 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313172953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A230685393</galeid><doaj_id>oai_doaj_org_article_4fe955802c194aa685ed1a1d7a9c59ab</doaj_id><sourcerecordid>A230685393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLeyGiMyZN0jQ3wrB-DSwKft2G0zSZzdppapLuuv_edDu7bEFYJBc9JM_7tnl7TpY9xWiFCcdvztzgO2hXvartCiOEqkLcyw4xY2TJCavu36oPskchnCGUSlE-zA4KxCpWFugwC-vodlYtvQ6uHaJ1XR7sbmhhLEPee91YFXPIo4cu2AmIEHVunM_PdbCqTfUQxoNGG9vpJq8vc-W6CEnoTNIafZG3trdNHsG24XH2wEAb9JP9c5H9-PD--_Gn5cmXj5vj9clSVaSMy6IoK45EWWrGDDKsFhRTwjjURNeEM-DGIEyNglJTUpc11BQx1BCEk0QRssieT75964Lc5xUkJmnxQrCR2ExE4-BM9t7uwF9KB1ZebTi_leDjeEVJjRaMVahQWFCAsmK6wYAbDkIxkb5pkb2avMKF7od65vbO_lxfuYVBUlEJkejXd9O_4qmsCiaKhL_dX2Wod7pRukv_o52p5iedPZVbdy6LSmCOeDJ4sTfw7vegQ5Q7G5RuW-i0G4LklJaiohzdTRJCOeclS-TRRG4hBWQ749Kr1UjLdUFQioiIMePVP6i0Gp0az3WpZ9L-TPByJhhbSf-JWxhCkJtvX_-D_Txn6cQq70Lw2tzEh5EcR-q6ReQ4UnI_Ukn27Hb0N6LrGSJ_AScbHnc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733477765</pqid></control><display><type>article</type><title>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</title><source>MEDLINE</source><source>PubMed Central(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>Public Library of Science (PLoS)</source><creator>Kasson, Peter M ; Lindahl, Erik ; Pande, Vijay S</creator><contributor>Jacobson, Matthew P.</contributor><creatorcontrib>Kasson, Peter M ; Lindahl, Erik ; Pande, Vijay S ; Jacobson, Matthew P.</creatorcontrib><description>Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000829</identifier><identifier>PMID: 20585620</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding proteins ; Biochemistry ; Biokemi ; Biophysics/Membrane Proteins and Energy Transduction ; Biophysics/Theory and Simulation ; Catalysis ; Cell membranes ; Chemistry ; Computational Biology/Molecular Dynamics ; Computer Simulation ; Distributed processing ; Experiments ; Health aspects ; Hemagglutinins, Viral - chemistry ; Hemagglutinins, Viral - metabolism ; Hydrophobic and Hydrophilic Interactions ; Influenza ; Kemi ; Lipids ; Membrane Fusion - physiology ; Membranes ; Models, Molecular ; Mutation ; NATURAL SCIENCES ; NATURVETENSKAP ; Orthomyxoviridae ; Peptides ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylethanolamines - chemistry ; Phosphatidylethanolamines - metabolism ; Physiological aspects ; Proteins ; Simulation ; Transport Vesicles - chemistry ; Transport Vesicles - metabolism ; Virology/Host Invasion and Cell Entry ; Viruses ; Water - chemistry</subject><ispartof>PLoS computational biology, 2010-06, Vol.6 (6), p.e1000829-e1000829</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Kasson et al. 2010</rights><rights>2010 Kasson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kasson PM, Lindahl E, Pande VS (2010) Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails. PLoS Comput Biol 6(6): e1000829. doi:10.1371/journal.pcbi.1000829</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</citedby><cites>FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891707/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891707/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20585620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-82592$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-49899$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Jacobson, Matthew P.</contributor><creatorcontrib>Kasson, Peter M</creatorcontrib><creatorcontrib>Lindahl, Erik</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><title>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.</description><subject>Binding proteins</subject><subject>Biochemistry</subject><subject>Biokemi</subject><subject>Biophysics/Membrane Proteins and Energy Transduction</subject><subject>Biophysics/Theory and Simulation</subject><subject>Catalysis</subject><subject>Cell membranes</subject><subject>Chemistry</subject><subject>Computational Biology/Molecular Dynamics</subject><subject>Computer Simulation</subject><subject>Distributed processing</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Hemagglutinins, Viral - chemistry</subject><subject>Hemagglutinins, Viral - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Influenza</subject><subject>Kemi</subject><subject>Lipids</subject><subject>Membrane Fusion - physiology</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Orthomyxoviridae</subject><subject>Peptides</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylethanolamines - chemistry</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Transport Vesicles - chemistry</subject><subject>Transport Vesicles - metabolism</subject><subject>Virology/Host Invasion and Cell Entry</subject><subject>Viruses</subject><subject>Water - chemistry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLeyGiMyZN0jQ3wrB-DSwKft2G0zSZzdppapLuuv_edDu7bEFYJBc9JM_7tnl7TpY9xWiFCcdvztzgO2hXvartCiOEqkLcyw4xY2TJCavu36oPskchnCGUSlE-zA4KxCpWFugwC-vodlYtvQ6uHaJ1XR7sbmhhLEPee91YFXPIo4cu2AmIEHVunM_PdbCqTfUQxoNGG9vpJq8vc-W6CEnoTNIafZG3trdNHsG24XH2wEAb9JP9c5H9-PD--_Gn5cmXj5vj9clSVaSMy6IoK45EWWrGDDKsFhRTwjjURNeEM-DGIEyNglJTUpc11BQx1BCEk0QRssieT75964Lc5xUkJmnxQrCR2ExE4-BM9t7uwF9KB1ZebTi_leDjeEVJjRaMVahQWFCAsmK6wYAbDkIxkb5pkb2avMKF7od65vbO_lxfuYVBUlEJkejXd9O_4qmsCiaKhL_dX2Wod7pRukv_o52p5iedPZVbdy6LSmCOeDJ4sTfw7vegQ5Q7G5RuW-i0G4LklJaiohzdTRJCOeclS-TRRG4hBWQ749Kr1UjLdUFQioiIMePVP6i0Gp0az3WpZ9L-TPByJhhbSf-JWxhCkJtvX_-D_Txn6cQq70Lw2tzEh5EcR-q6ReQ4UnI_Ukn27Hb0N6LrGSJ_AScbHnc</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Kasson, Peter M</creator><creator>Lindahl, Erik</creator><creator>Pande, Vijay S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope><scope>DOA</scope></search><sort><creationdate>20100601</creationdate><title>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</title><author>Kasson, Peter M ; Lindahl, Erik ; Pande, Vijay S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c836t-226870966e55f0f5b9414357ab3eb375a7ff014fca6e43b6bab4050d3016e5c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binding proteins</topic><topic>Biochemistry</topic><topic>Biokemi</topic><topic>Biophysics/Membrane Proteins and Energy Transduction</topic><topic>Biophysics/Theory and Simulation</topic><topic>Catalysis</topic><topic>Cell membranes</topic><topic>Chemistry</topic><topic>Computational Biology/Molecular Dynamics</topic><topic>Computer Simulation</topic><topic>Distributed processing</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Hemagglutinins, Viral - chemistry</topic><topic>Hemagglutinins, Viral - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Influenza</topic><topic>Kemi</topic><topic>Lipids</topic><topic>Membrane Fusion - physiology</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Orthomyxoviridae</topic><topic>Peptides</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylethanolamines - chemistry</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Transport Vesicles - chemistry</topic><topic>Transport Vesicles - metabolism</topic><topic>Virology/Host Invasion and Cell Entry</topic><topic>Viruses</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasson, Peter M</creatorcontrib><creatorcontrib>Lindahl, Erik</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasson, Peter M</au><au>Lindahl, Erik</au><au>Pande, Vijay S</au><au>Jacobson, Matthew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>6</volume><issue>6</issue><spage>e1000829</spage><epage>e1000829</epage><pages>e1000829-e1000829</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20585620</pmid><doi>10.1371/journal.pcbi.1000829</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2010-06, Vol.6 (6), p.e1000829-e1000829 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313172953 |
source | MEDLINE; PubMed Central(OpenAccess); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; Public Library of Science (PLoS) |
subjects | Binding proteins Biochemistry Biokemi Biophysics/Membrane Proteins and Energy Transduction Biophysics/Theory and Simulation Catalysis Cell membranes Chemistry Computational Biology/Molecular Dynamics Computer Simulation Distributed processing Experiments Health aspects Hemagglutinins, Viral - chemistry Hemagglutinins, Viral - metabolism Hydrophobic and Hydrophilic Interactions Influenza Kemi Lipids Membrane Fusion - physiology Membranes Models, Molecular Mutation NATURAL SCIENCES NATURVETENSKAP Orthomyxoviridae Peptides Phosphatidylcholines - chemistry Phosphatidylcholines - metabolism Phosphatidylethanolamines - chemistry Phosphatidylethanolamines - metabolism Physiological aspects Proteins Simulation Transport Vesicles - chemistry Transport Vesicles - metabolism Virology/Host Invasion and Cell Entry Viruses Water - chemistry |
title | Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-resolution%20simulations%20predict%20a%20transition%20state%20for%20vesicle%20fusion%20defined%20by%20contact%20of%20a%20few%20lipid%20tails&rft.jtitle=PLoS%20computational%20biology&rft.au=Kasson,%20Peter%20M&rft.date=2010-06-01&rft.volume=6&rft.issue=6&rft.spage=e1000829&rft.epage=e1000829&rft.pages=e1000829-e1000829&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000829&rft_dat=%3Cgale_plos_%3EA230685393%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733477765&rft_id=info:pmid/20585620&rft_galeid=A230685393&rft_doaj_id=oai_doaj_org_article_4fe955802c194aa685ed1a1d7a9c59ab&rfr_iscdi=true |