Interspecies translation of disease networks increases robustness and predictive accuracy
Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by li...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2011-11, Vol.7 (11), p.e1002258-e1002258 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1002258 |
---|---|
container_issue | 11 |
container_start_page | e1002258 |
container_title | PLoS computational biology |
container_volume | 7 |
creator | Anvar, Seyed Yahya Tucker, Allan Vinciotti, Veronica Venema, Andrea van Ommen, Gert-Jan B van der Maarel, Silvere M Raz, Vered 't Hoen, Peter A C |
description | Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to the identification of the most consistent relationships within the network structure. In this study, we demonstrate the performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data. We show that the identified key components of the OPMD disease network can be confirmed in an unseen and independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease molecular mechanisms. |
doi_str_mv | 10.1371/journal.pcbi.1002258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1313172513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_de865cd5a04548ba84a6109d017e94d3</doaj_id><sourcerecordid>903660232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-9491e322015ed63f8b13527d10f1b2d7aedea9f986d9b432ed88f305177075d3</originalsourceid><addsrcrecordid>eNpVUk1v1DAQtRCIli3_AEFuPe3ijziOL0ioomWlSlx66cly7EnxkrWDJynqv8fbTatWPng0fvPmzfMQ8onRDROKfd2lOUc7bEbXhQ2jlHPZviGnTEqxVkK2b1_EJ-QD4o7SEurmPTnhnCqupTwlt9s4QcYRXACspmwjDnYKKVapr3xAsAhVhOlfyn-wCtHlQwarnLoZpwiIlY2-GjP44KZwD5V1bs7WPZyRd70dED4u94rcXP64ufi5vv51tb34fr12tVbTWteagSiCmATfiL7tmJBceUZ71nGvLHiwutdt43VXCw6-bXtBJVOKKunFinw50o5DQrOYgoaJchSXTBTE9ojwye7MmMPe5geTbDCPiZTvjM1TcAMYD20jnZeW1rJuO9vWtmFUe8oU6NofuL4t3eZuD95BLJYNr0hfv8Tw29yleyOK47qoWZHzhSCnvzPgZPYBHQyDjZBmNJqKpqFc8IKsj0iXE2KG_rkLo-awAU_DmsMGmGUDStnnlwqfi56-XPwHTg6xJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903660232</pqid></control><display><type>article</type><title>Interspecies translation of disease networks increases robustness and predictive accuracy</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Anvar, Seyed Yahya ; Tucker, Allan ; Vinciotti, Veronica ; Venema, Andrea ; van Ommen, Gert-Jan B ; van der Maarel, Silvere M ; Raz, Vered ; 't Hoen, Peter A C</creator><creatorcontrib>Anvar, Seyed Yahya ; Tucker, Allan ; Vinciotti, Veronica ; Venema, Andrea ; van Ommen, Gert-Jan B ; van der Maarel, Silvere M ; Raz, Vered ; 't Hoen, Peter A C</creatorcontrib><description>Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to the identification of the most consistent relationships within the network structure. In this study, we demonstrate the performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data. We show that the identified key components of the OPMD disease network can be confirmed in an unseen and independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease molecular mechanisms.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002258</identifier><identifier>PMID: 22072955</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; Bayes Theorem ; Biology ; Computational Biology ; Computer Science ; Databases, Genetic ; Disease - genetics ; Disease Models, Animal ; Drosophila - genetics ; Gene Expression ; Gene Regulatory Networks ; Genomics ; Humans ; Mathematics ; Mice ; Models, Genetic ; Muscular Dystrophy, Animal - genetics ; Muscular Dystrophy, Oculopharyngeal - genetics ; Phenotype ; Proteins ; Species Specificity ; Studies ; Transcriptome</subject><ispartof>PLoS computational biology, 2011-11, Vol.7 (11), p.e1002258-e1002258</ispartof><rights>Anvar et al. 2011</rights><rights>2011 Anvar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Anvar SY, Tucker A, Vinciotti V, Venema A, van Ommen G-JB, et al. (2011) Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy. PLoS Comput Biol 7(11): e1002258. doi:10.1371/journal.pcbi.1002258</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-9491e322015ed63f8b13527d10f1b2d7aedea9f986d9b432ed88f305177075d3</citedby><cites>FETCH-LOGICAL-c497t-9491e322015ed63f8b13527d10f1b2d7aedea9f986d9b432ed88f305177075d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207951/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207951/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22072955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anvar, Seyed Yahya</creatorcontrib><creatorcontrib>Tucker, Allan</creatorcontrib><creatorcontrib>Vinciotti, Veronica</creatorcontrib><creatorcontrib>Venema, Andrea</creatorcontrib><creatorcontrib>van Ommen, Gert-Jan B</creatorcontrib><creatorcontrib>van der Maarel, Silvere M</creatorcontrib><creatorcontrib>Raz, Vered</creatorcontrib><creatorcontrib>'t Hoen, Peter A C</creatorcontrib><title>Interspecies translation of disease networks increases robustness and predictive accuracy</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to the identification of the most consistent relationships within the network structure. In this study, we demonstrate the performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data. We show that the identified key components of the OPMD disease network can be confirmed in an unseen and independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease molecular mechanisms.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Biology</subject><subject>Computational Biology</subject><subject>Computer Science</subject><subject>Databases, Genetic</subject><subject>Disease - genetics</subject><subject>Disease Models, Animal</subject><subject>Drosophila - genetics</subject><subject>Gene Expression</subject><subject>Gene Regulatory Networks</subject><subject>Genomics</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Muscular Dystrophy, Animal - genetics</subject><subject>Muscular Dystrophy, Oculopharyngeal - genetics</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Species Specificity</subject><subject>Studies</subject><subject>Transcriptome</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUk1v1DAQtRCIli3_AEFuPe3ijziOL0ioomWlSlx66cly7EnxkrWDJynqv8fbTatWPng0fvPmzfMQ8onRDROKfd2lOUc7bEbXhQ2jlHPZviGnTEqxVkK2b1_EJ-QD4o7SEurmPTnhnCqupTwlt9s4QcYRXACspmwjDnYKKVapr3xAsAhVhOlfyn-wCtHlQwarnLoZpwiIlY2-GjP44KZwD5V1bs7WPZyRd70dED4u94rcXP64ufi5vv51tb34fr12tVbTWteagSiCmATfiL7tmJBceUZ71nGvLHiwutdt43VXCw6-bXtBJVOKKunFinw50o5DQrOYgoaJchSXTBTE9ojwye7MmMPe5geTbDCPiZTvjM1TcAMYD20jnZeW1rJuO9vWtmFUe8oU6NofuL4t3eZuD95BLJYNr0hfv8Tw29yleyOK47qoWZHzhSCnvzPgZPYBHQyDjZBmNJqKpqFc8IKsj0iXE2KG_rkLo-awAU_DmsMGmGUDStnnlwqfi56-XPwHTg6xJg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Anvar, Seyed Yahya</creator><creator>Tucker, Allan</creator><creator>Vinciotti, Veronica</creator><creator>Venema, Andrea</creator><creator>van Ommen, Gert-Jan B</creator><creator>van der Maarel, Silvere M</creator><creator>Raz, Vered</creator><creator>'t Hoen, Peter A C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111101</creationdate><title>Interspecies translation of disease networks increases robustness and predictive accuracy</title><author>Anvar, Seyed Yahya ; Tucker, Allan ; Vinciotti, Veronica ; Venema, Andrea ; van Ommen, Gert-Jan B ; van der Maarel, Silvere M ; Raz, Vered ; 't Hoen, Peter A C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-9491e322015ed63f8b13527d10f1b2d7aedea9f986d9b432ed88f305177075d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Biology</topic><topic>Computational Biology</topic><topic>Computer Science</topic><topic>Databases, Genetic</topic><topic>Disease - genetics</topic><topic>Disease Models, Animal</topic><topic>Drosophila - genetics</topic><topic>Gene Expression</topic><topic>Gene Regulatory Networks</topic><topic>Genomics</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Muscular Dystrophy, Animal - genetics</topic><topic>Muscular Dystrophy, Oculopharyngeal - genetics</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Species Specificity</topic><topic>Studies</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anvar, Seyed Yahya</creatorcontrib><creatorcontrib>Tucker, Allan</creatorcontrib><creatorcontrib>Vinciotti, Veronica</creatorcontrib><creatorcontrib>Venema, Andrea</creatorcontrib><creatorcontrib>van Ommen, Gert-Jan B</creatorcontrib><creatorcontrib>van der Maarel, Silvere M</creatorcontrib><creatorcontrib>Raz, Vered</creatorcontrib><creatorcontrib>'t Hoen, Peter A C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anvar, Seyed Yahya</au><au>Tucker, Allan</au><au>Vinciotti, Veronica</au><au>Venema, Andrea</au><au>van Ommen, Gert-Jan B</au><au>van der Maarel, Silvere M</au><au>Raz, Vered</au><au>'t Hoen, Peter A C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interspecies translation of disease networks increases robustness and predictive accuracy</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>7</volume><issue>11</issue><spage>e1002258</spage><epage>e1002258</epage><pages>e1002258-e1002258</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Gene regulatory networks give important insights into the mechanisms underlying physiology and pathophysiology. The derivation of gene regulatory networks from high-throughput expression data via machine learning strategies is problematic as the reliability of these models is often compromised by limited and highly variable samples, heterogeneity in transcript isoforms, noise, and other artifacts. Here, we develop a novel algorithm, dubbed Dandelion, in which we construct and train intraspecies Bayesian networks that are translated and assessed on independent test sets from other species in a reiterative procedure. The interspecies disease networks are subjected to multi-layers of analysis and evaluation, leading to the identification of the most consistent relationships within the network structure. In this study, we demonstrate the performance of our algorithms on datasets from animal models of oculopharyngeal muscular dystrophy (OPMD) and patient materials. We show that the interspecies network of genes coding for the proteasome provide highly accurate predictions on gene expression levels and disease phenotype. Moreover, the cross-species translation increases the stability and robustness of these networks. Unlike existing modeling approaches, our algorithms do not require assumptions on notoriously difficult one-to-one mapping of protein orthologues or alternative transcripts and can deal with missing data. We show that the identified key components of the OPMD disease network can be confirmed in an unseen and independent disease model. This study presents a state-of-the-art strategy in constructing interspecies disease networks that provide crucial information on regulatory relationships among genes, leading to better understanding of the disease molecular mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22072955</pmid><doi>10.1371/journal.pcbi.1002258</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2011-11, Vol.7 (11), p.e1002258-e1002258 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313172513 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Algorithms Animals Artificial Intelligence Bayes Theorem Biology Computational Biology Computer Science Databases, Genetic Disease - genetics Disease Models, Animal Drosophila - genetics Gene Expression Gene Regulatory Networks Genomics Humans Mathematics Mice Models, Genetic Muscular Dystrophy, Animal - genetics Muscular Dystrophy, Oculopharyngeal - genetics Phenotype Proteins Species Specificity Studies Transcriptome |
title | Interspecies translation of disease networks increases robustness and predictive accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interspecies%20translation%20of%20disease%20networks%20increases%20robustness%20and%20predictive%20accuracy&rft.jtitle=PLoS%20computational%20biology&rft.au=Anvar,%20Seyed%20Yahya&rft.date=2011-11-01&rft.volume=7&rft.issue=11&rft.spage=e1002258&rft.epage=e1002258&rft.pages=e1002258-e1002258&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002258&rft_dat=%3Cproquest_plos_%3E903660232%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903660232&rft_id=info:pmid/22072955&rft_doaj_id=oai_doaj_org_article_de865cd5a04548ba84a6109d017e94d3&rfr_iscdi=true |