Drug off-target effects predicted using structural analysis in the context of a metabolic network model

Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-09, Vol.6 (9), p.e1000938-e1000938
Hauptverfasser: Chang, Roger L, Xie, Li, Xie, Lei, Bourne, Philip E, Palsson, Bernhard Ø
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000938
container_issue 9
container_start_page e1000938
container_title PLoS computational biology
container_volume 6
creator Chang, Roger L
Xie, Li
Xie, Lei
Bourne, Philip E
Palsson, Bernhard Ø
description Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine.
doi_str_mv 10.1371/journal.pcbi.1000938
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313167144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A238912225</galeid><doaj_id>oai_doaj_org_article_411025646d134aacb96038b54f586b96</doaj_id><sourcerecordid>A238912225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c731t-e986e769517f91b6e15af180e7b2f0488c051eae9f45ff2799226280d3a7892b3</originalsourceid><addsrcrecordid>eNqVkkuLFDEQxxtR3HX1G4gGPKiHGfPodJKLsKyvgUXBxzmk05XejD2d2SSt7rc37cwuOyCC1CGVyq_-Raqqqh4TvCRMkFfrMMXRDMutbf2SYIwVk3eqY8I5WwjG5d1b_lH1IKU1xsVVzf3qiGLFBSHyuOrfxKlHwblFNrGHjMA5sDmhbYTO2wwdmpIfe5RynGyeohmQKWWvkk_IjyhfALJhzPArFxVk0AayacPgLRoh_wzxO9qEDoaH1T1nhgSP9udJ9e3d269nHxbnn96vzk7PF1YwkhegZAOiUZwIp0jbAOHGEYlBtNThWkqLOQEDytXcOSqUorShEnfMCKloy06qpzvd7RCS3vcoacKKNYLUdSFWO6ILZq230W9MvNLBeP0nEGKvTczeDqBrQjDlTd10hNXG2FY1mMmW147LplyK1ut9tandQGdhzKVBB6KHL6O_0H34oaniuBG8CDzfC8RwOUHKeuOThWEwI4QpacEVo3XD5lIv_kkSKaisCzyLPtuhvSmf8KMLpbadcX1KmVSEUjpTy79QxTrY-DJScL7EDxJeHiTsx96bKSW9-vL5P9iPh2y9Y20MKUVwN_0jWM-rfj1GPa-63q96SXtyu_c3Sde7zX4DKfr5Ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872843245</pqid></control><display><type>article</type><title>Drug off-target effects predicted using structural analysis in the context of a metabolic network model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Chang, Roger L ; Xie, Li ; Xie, Lei ; Bourne, Philip E ; Palsson, Bernhard Ø</creator><contributor>Dunbrack, Roland L.</contributor><creatorcontrib>Chang, Roger L ; Xie, Li ; Xie, Lei ; Bourne, Philip E ; Palsson, Bernhard Ø ; Dunbrack, Roland L.</creatorcontrib><description>Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000938</identifier><identifier>PMID: 20957118</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Anticholesteremic agents ; Biochemistry/Biomacromolecule-Ligand Interactions ; Bioinformatics ; Cardiovascular Disorders/Cardiovascular Pharmacology ; Cardiovascular Disorders/Hypertension ; Chemical properties ; Complications and side effects ; Computational biology ; Computational Biology - methods ; Computational Biology/Metabolic Networks ; Computational Biology/Systems Biology ; Drug Discovery - methods ; Drug metabolism ; Gene Expression Profiling ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Gene Expression ; Genetics and Genomics/Genetics of Disease ; Humans ; Kidney - drug effects ; Kidney - metabolism ; Kidney diseases ; Kidney Diseases - metabolism ; Kidney Function Tests ; Medical research ; Metabolic disorders ; Metabolic Networks and Pathways - drug effects ; Metabolic Networks and Pathways - genetics ; Metabolic Networks and Pathways - physiology ; Metabolomics ; Models, Biological ; Pharmaceutical industry ; Pharmacokinetics ; Pharmacology/Adverse Reactions ; Pharmacology/Drug Development ; Pharmacology/Personalized Medicine ; Physiology/Renal, Fluid, and Electrolyte Physiology ; Protein Binding ; Proteins ; Proteome - drug effects ; Proteome - genetics ; Proteome - metabolism ; Quinolines - pharmacology ; Risk factors ; ROC Curve ; Structural analysis (Engineering) ; Studies ; Technology application</subject><ispartof>PLoS computational biology, 2010-09, Vol.6 (9), p.e1000938-e1000938</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Chang et al. 2010</rights><rights>2010 Chang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ (2010) Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model. PLoS Comput Biol 6(9): e1000938. doi:10.1371/journal.pcbi.1000938</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c731t-e986e769517f91b6e15af180e7b2f0488c051eae9f45ff2799226280d3a7892b3</citedby><cites>FETCH-LOGICAL-c731t-e986e769517f91b6e15af180e7b2f0488c051eae9f45ff2799226280d3a7892b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20957118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dunbrack, Roland L.</contributor><creatorcontrib>Chang, Roger L</creatorcontrib><creatorcontrib>Xie, Li</creatorcontrib><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Bourne, Philip E</creatorcontrib><creatorcontrib>Palsson, Bernhard Ø</creatorcontrib><title>Drug off-target effects predicted using structural analysis in the context of a metabolic network model</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine.</description><subject>Algorithms</subject><subject>Anticholesteremic agents</subject><subject>Biochemistry/Biomacromolecule-Ligand Interactions</subject><subject>Bioinformatics</subject><subject>Cardiovascular Disorders/Cardiovascular Pharmacology</subject><subject>Cardiovascular Disorders/Hypertension</subject><subject>Chemical properties</subject><subject>Complications and side effects</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computational Biology/Metabolic Networks</subject><subject>Computational Biology/Systems Biology</subject><subject>Drug Discovery - methods</subject><subject>Drug metabolism</subject><subject>Gene Expression Profiling</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Genetics and Genomics/Genetics of Disease</subject><subject>Humans</subject><subject>Kidney - drug effects</subject><subject>Kidney - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney Diseases - metabolism</subject><subject>Kidney Function Tests</subject><subject>Medical research</subject><subject>Metabolic disorders</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic Networks and Pathways - physiology</subject><subject>Metabolomics</subject><subject>Models, Biological</subject><subject>Pharmaceutical industry</subject><subject>Pharmacokinetics</subject><subject>Pharmacology/Adverse Reactions</subject><subject>Pharmacology/Drug Development</subject><subject>Pharmacology/Personalized Medicine</subject><subject>Physiology/Renal, Fluid, and Electrolyte Physiology</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteome - drug effects</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Quinolines - pharmacology</subject><subject>Risk factors</subject><subject>ROC Curve</subject><subject>Structural analysis (Engineering)</subject><subject>Studies</subject><subject>Technology application</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuLFDEQxxtR3HX1G4gGPKiHGfPodJKLsKyvgUXBxzmk05XejD2d2SSt7rc37cwuOyCC1CGVyq_-Raqqqh4TvCRMkFfrMMXRDMutbf2SYIwVk3eqY8I5WwjG5d1b_lH1IKU1xsVVzf3qiGLFBSHyuOrfxKlHwblFNrGHjMA5sDmhbYTO2wwdmpIfe5RynGyeohmQKWWvkk_IjyhfALJhzPArFxVk0AayacPgLRoh_wzxO9qEDoaH1T1nhgSP9udJ9e3d269nHxbnn96vzk7PF1YwkhegZAOiUZwIp0jbAOHGEYlBtNThWkqLOQEDytXcOSqUorShEnfMCKloy06qpzvd7RCS3vcoacKKNYLUdSFWO6ILZq230W9MvNLBeP0nEGKvTczeDqBrQjDlTd10hNXG2FY1mMmW147LplyK1ut9tandQGdhzKVBB6KHL6O_0H34oaniuBG8CDzfC8RwOUHKeuOThWEwI4QpacEVo3XD5lIv_kkSKaisCzyLPtuhvSmf8KMLpbadcX1KmVSEUjpTy79QxTrY-DJScL7EDxJeHiTsx96bKSW9-vL5P9iPh2y9Y20MKUVwN_0jWM-rfj1GPa-63q96SXtyu_c3Sde7zX4DKfr5Ug</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Chang, Roger L</creator><creator>Xie, Li</creator><creator>Xie, Lei</creator><creator>Bourne, Philip E</creator><creator>Palsson, Bernhard Ø</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100901</creationdate><title>Drug off-target effects predicted using structural analysis in the context of a metabolic network model</title><author>Chang, Roger L ; Xie, Li ; Xie, Lei ; Bourne, Philip E ; Palsson, Bernhard Ø</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c731t-e986e769517f91b6e15af180e7b2f0488c051eae9f45ff2799226280d3a7892b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Anticholesteremic agents</topic><topic>Biochemistry/Biomacromolecule-Ligand Interactions</topic><topic>Bioinformatics</topic><topic>Cardiovascular Disorders/Cardiovascular Pharmacology</topic><topic>Cardiovascular Disorders/Hypertension</topic><topic>Chemical properties</topic><topic>Complications and side effects</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computational Biology/Metabolic Networks</topic><topic>Computational Biology/Systems Biology</topic><topic>Drug Discovery - methods</topic><topic>Drug metabolism</topic><topic>Gene Expression Profiling</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Genetics and Genomics/Genetics of Disease</topic><topic>Humans</topic><topic>Kidney - drug effects</topic><topic>Kidney - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney Diseases - metabolism</topic><topic>Kidney Function Tests</topic><topic>Medical research</topic><topic>Metabolic disorders</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic Networks and Pathways - physiology</topic><topic>Metabolomics</topic><topic>Models, Biological</topic><topic>Pharmaceutical industry</topic><topic>Pharmacokinetics</topic><topic>Pharmacology/Adverse Reactions</topic><topic>Pharmacology/Drug Development</topic><topic>Pharmacology/Personalized Medicine</topic><topic>Physiology/Renal, Fluid, and Electrolyte Physiology</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteome - drug effects</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Quinolines - pharmacology</topic><topic>Risk factors</topic><topic>ROC Curve</topic><topic>Structural analysis (Engineering)</topic><topic>Studies</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Roger L</creatorcontrib><creatorcontrib>Xie, Li</creatorcontrib><creatorcontrib>Xie, Lei</creatorcontrib><creatorcontrib>Bourne, Philip E</creatorcontrib><creatorcontrib>Palsson, Bernhard Ø</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Roger L</au><au>Xie, Li</au><au>Xie, Lei</au><au>Bourne, Philip E</au><au>Palsson, Bernhard Ø</au><au>Dunbrack, Roland L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug off-target effects predicted using structural analysis in the context of a metabolic network model</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>6</volume><issue>9</issue><spage>e1000938</spage><epage>e1000938</epage><pages>e1000938-e1000938</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20957118</pmid><doi>10.1371/journal.pcbi.1000938</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-09, Vol.6 (9), p.e1000938-e1000938
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313167144
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Algorithms
Anticholesteremic agents
Biochemistry/Biomacromolecule-Ligand Interactions
Bioinformatics
Cardiovascular Disorders/Cardiovascular Pharmacology
Cardiovascular Disorders/Hypertension
Chemical properties
Complications and side effects
Computational biology
Computational Biology - methods
Computational Biology/Metabolic Networks
Computational Biology/Systems Biology
Drug Discovery - methods
Drug metabolism
Gene Expression Profiling
Genetics and Genomics/Bioinformatics
Genetics and Genomics/Gene Expression
Genetics and Genomics/Genetics of Disease
Humans
Kidney - drug effects
Kidney - metabolism
Kidney diseases
Kidney Diseases - metabolism
Kidney Function Tests
Medical research
Metabolic disorders
Metabolic Networks and Pathways - drug effects
Metabolic Networks and Pathways - genetics
Metabolic Networks and Pathways - physiology
Metabolomics
Models, Biological
Pharmaceutical industry
Pharmacokinetics
Pharmacology/Adverse Reactions
Pharmacology/Drug Development
Pharmacology/Personalized Medicine
Physiology/Renal, Fluid, and Electrolyte Physiology
Protein Binding
Proteins
Proteome - drug effects
Proteome - genetics
Proteome - metabolism
Quinolines - pharmacology
Risk factors
ROC Curve
Structural analysis (Engineering)
Studies
Technology application
title Drug off-target effects predicted using structural analysis in the context of a metabolic network model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20off-target%20effects%20predicted%20using%20structural%20analysis%20in%20the%20context%20of%20a%20metabolic%20network%20model&rft.jtitle=PLoS%20computational%20biology&rft.au=Chang,%20Roger%20L&rft.date=2010-09-01&rft.volume=6&rft.issue=9&rft.spage=e1000938&rft.epage=e1000938&rft.pages=e1000938-e1000938&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000938&rft_dat=%3Cgale_plos_%3EA238912225%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872843245&rft_id=info:pmid/20957118&rft_galeid=A238912225&rft_doaj_id=oai_doaj_org_article_411025646d134aacb96038b54f586b96&rfr_iscdi=true