Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in viv...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2010-03, Vol.6 (3), p.e1000694-e1000694 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000694 |
---|---|
container_issue | 3 |
container_start_page | e1000694 |
container_title | PLoS computational biology |
container_volume | 6 |
creator | McGuffee, Sean R Elcock, Adrian H |
description | A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo. |
doi_str_mv | 10.1371/journal.pcbi.1000694 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313167109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A223227023</galeid><doaj_id>oai_doaj_org_article_c5fa7d121b534ea196b9fd5c85749f63</doaj_id><sourcerecordid>A223227023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</originalsourceid><addsrcrecordid>eNqVUttuEzEQXSEQLYU_QOAnEBIJvnv9glSVW6QKJC7PlteX1JV3HWwvkL_HIWnVPKJ58HjmzJnx-HTdUwSXiAj05jrNedJxuTFDWCIIIZf0XneKGCMLQVh__45_0j0q5RrC5kr-sDvBEGOEGTvt1Lvg_VxCml4Dk9NvG6Y1eAE2OVUXJlCqHkIMdQvaRQO7nfQYDBhTdGaOOjfPugiSB_XKgUGb6nLQEZhtTZuoy_i4e-B1LO7J4Tzrfnx4__3i0-Lyy8fVxfnlwnAB60JKwaHlvMeYeNtr4gdsKLUSMccHIWlPkWeGUUNajpMW4D3pnUcCWiMQOeue73k3MRV12E1RiDTjAkHZEKs9wiZ9rTY5jDpvVdJB_QukvFY612CiU4Z5LSzCaGCEOo0kH6S3zPRMUNm6N663h27zMDpr3FSzjkekx5kpXKl1-qVwTzAXtBG8PBDk9HN2paoxFONi1JNLc1GCEEIlZ6Ihl3vkWrfJwuRTIzTNrGs_kSbnQ4uft71hLCDezfbqqKBhqvtT13ouRa2-ff0P7OdjLN1jm0xKyc7fPhdBtVPkzdbVTpHqoMhW9uzuqm6LbiRI_gKetd0L</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733349657</pqid></control><display><type>article</type><title>Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>McGuffee, Sean R ; Elcock, Adrian H</creator><contributor>Briggs, James M.</contributor><creatorcontrib>McGuffee, Sean R ; Elcock, Adrian H ; Briggs, James M.</creatorcontrib><description>A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000694</identifier><identifier>PMID: 20221255</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aqueous solutions ; Biophysics/Macromolecular Assemblies and Machines ; Biophysics/Protein Folding ; Biophysics/Theory and Simulation ; Computational Biology/Molecular Dynamics ; Computer Simulation ; Cytoplasm ; Cytoplasm - chemistry ; Diffusion ; E coli ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli Proteins - chemistry ; Macromolecules ; Models, Chemical ; Models, Molecular ; Molecular weight ; Physiological aspects ; Properties ; Protein Conformation ; Protein Folding ; Proteins ; Structure ; Studies ; Test systems</subject><ispartof>PLoS computational biology, 2010-03, Vol.6 (3), p.e1000694-e1000694</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>McGuffee, Elcock. 2010</rights><rights>2010 McGuffee, Elcock. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: McGuffee SR, Elcock AH (2010) Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm. PLoS Comput Biol 6(3): e1000694. doi:10.1371/journal.pcbi.1000694</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</citedby><cites>FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20221255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Briggs, James M.</contributor><creatorcontrib>McGuffee, Sean R</creatorcontrib><creatorcontrib>Elcock, Adrian H</creatorcontrib><title>Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.</description><subject>Aqueous solutions</subject><subject>Biophysics/Macromolecular Assemblies and Machines</subject><subject>Biophysics/Protein Folding</subject><subject>Biophysics/Theory and Simulation</subject><subject>Computational Biology/Molecular Dynamics</subject><subject>Computer Simulation</subject><subject>Cytoplasm</subject><subject>Cytoplasm - chemistry</subject><subject>Diffusion</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Macromolecules</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular weight</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Structure</subject><subject>Studies</subject><subject>Test systems</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUttuEzEQXSEQLYU_QOAnEBIJvnv9glSVW6QKJC7PlteX1JV3HWwvkL_HIWnVPKJ58HjmzJnx-HTdUwSXiAj05jrNedJxuTFDWCIIIZf0XneKGCMLQVh__45_0j0q5RrC5kr-sDvBEGOEGTvt1Lvg_VxCml4Dk9NvG6Y1eAE2OVUXJlCqHkIMdQvaRQO7nfQYDBhTdGaOOjfPugiSB_XKgUGb6nLQEZhtTZuoy_i4e-B1LO7J4Tzrfnx4__3i0-Lyy8fVxfnlwnAB60JKwaHlvMeYeNtr4gdsKLUSMccHIWlPkWeGUUNajpMW4D3pnUcCWiMQOeue73k3MRV12E1RiDTjAkHZEKs9wiZ9rTY5jDpvVdJB_QukvFY612CiU4Z5LSzCaGCEOo0kH6S3zPRMUNm6N663h27zMDpr3FSzjkekx5kpXKl1-qVwTzAXtBG8PBDk9HN2paoxFONi1JNLc1GCEEIlZ6Ihl3vkWrfJwuRTIzTNrGs_kSbnQ4uft71hLCDezfbqqKBhqvtT13ouRa2-ff0P7OdjLN1jm0xKyc7fPhdBtVPkzdbVTpHqoMhW9uzuqm6LbiRI_gKetd0L</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>McGuffee, Sean R</creator><creator>Elcock, Adrian H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100301</creationdate><title>Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm</title><author>McGuffee, Sean R ; Elcock, Adrian H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous solutions</topic><topic>Biophysics/Macromolecular Assemblies and Machines</topic><topic>Biophysics/Protein Folding</topic><topic>Biophysics/Theory and Simulation</topic><topic>Computational Biology/Molecular Dynamics</topic><topic>Computer Simulation</topic><topic>Cytoplasm</topic><topic>Cytoplasm - chemistry</topic><topic>Diffusion</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Macromolecules</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular weight</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Structure</topic><topic>Studies</topic><topic>Test systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuffee, Sean R</creatorcontrib><creatorcontrib>Elcock, Adrian H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGuffee, Sean R</au><au>Elcock, Adrian H</au><au>Briggs, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>6</volume><issue>3</issue><spage>e1000694</spage><epage>e1000694</epage><pages>e1000694-e1000694</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20221255</pmid><doi>10.1371/journal.pcbi.1000694</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2010-03, Vol.6 (3), p.e1000694-e1000694 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313167109 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Aqueous solutions Biophysics/Macromolecular Assemblies and Machines Biophysics/Protein Folding Biophysics/Theory and Simulation Computational Biology/Molecular Dynamics Computer Simulation Cytoplasm Cytoplasm - chemistry Diffusion E coli Escherichia coli Escherichia coli - chemistry Escherichia coli Proteins - chemistry Macromolecules Models, Chemical Models, Molecular Molecular weight Physiological aspects Properties Protein Conformation Protein Folding Proteins Structure Studies Test systems |
title | Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion,%20crowding%20&%20protein%20stability%20in%20a%20dynamic%20molecular%20model%20of%20the%20bacterial%20cytoplasm&rft.jtitle=PLoS%20computational%20biology&rft.au=McGuffee,%20Sean%20R&rft.date=2010-03-01&rft.volume=6&rft.issue=3&rft.spage=e1000694&rft.epage=e1000694&rft.pages=e1000694-e1000694&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000694&rft_dat=%3Cgale_plos_%3EA223227023%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733349657&rft_id=info:pmid/20221255&rft_galeid=A223227023&rft_doaj_id=oai_doaj_org_article_c5fa7d121b534ea196b9fd5c85749f63&rfr_iscdi=true |