Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm

A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in viv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-03, Vol.6 (3), p.e1000694-e1000694
Hauptverfasser: McGuffee, Sean R, Elcock, Adrian H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000694
container_issue 3
container_start_page e1000694
container_title PLoS computational biology
container_volume 6
creator McGuffee, Sean R
Elcock, Adrian H
description A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.
doi_str_mv 10.1371/journal.pcbi.1000694
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313167109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A223227023</galeid><doaj_id>oai_doaj_org_article_c5fa7d121b534ea196b9fd5c85749f63</doaj_id><sourcerecordid>A223227023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</originalsourceid><addsrcrecordid>eNqVUttuEzEQXSEQLYU_QOAnEBIJvnv9glSVW6QKJC7PlteX1JV3HWwvkL_HIWnVPKJ58HjmzJnx-HTdUwSXiAj05jrNedJxuTFDWCIIIZf0XneKGCMLQVh__45_0j0q5RrC5kr-sDvBEGOEGTvt1Lvg_VxCml4Dk9NvG6Y1eAE2OVUXJlCqHkIMdQvaRQO7nfQYDBhTdGaOOjfPugiSB_XKgUGb6nLQEZhtTZuoy_i4e-B1LO7J4Tzrfnx4__3i0-Lyy8fVxfnlwnAB60JKwaHlvMeYeNtr4gdsKLUSMccHIWlPkWeGUUNajpMW4D3pnUcCWiMQOeue73k3MRV12E1RiDTjAkHZEKs9wiZ9rTY5jDpvVdJB_QukvFY612CiU4Z5LSzCaGCEOo0kH6S3zPRMUNm6N663h27zMDpr3FSzjkekx5kpXKl1-qVwTzAXtBG8PBDk9HN2paoxFONi1JNLc1GCEEIlZ6Ihl3vkWrfJwuRTIzTNrGs_kSbnQ4uft71hLCDezfbqqKBhqvtT13ouRa2-ff0P7OdjLN1jm0xKyc7fPhdBtVPkzdbVTpHqoMhW9uzuqm6LbiRI_gKetd0L</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733349657</pqid></control><display><type>article</type><title>Diffusion, crowding &amp; protein stability in a dynamic molecular model of the bacterial cytoplasm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>McGuffee, Sean R ; Elcock, Adrian H</creator><contributor>Briggs, James M.</contributor><creatorcontrib>McGuffee, Sean R ; Elcock, Adrian H ; Briggs, James M.</creatorcontrib><description>A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000694</identifier><identifier>PMID: 20221255</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aqueous solutions ; Biophysics/Macromolecular Assemblies and Machines ; Biophysics/Protein Folding ; Biophysics/Theory and Simulation ; Computational Biology/Molecular Dynamics ; Computer Simulation ; Cytoplasm ; Cytoplasm - chemistry ; Diffusion ; E coli ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli Proteins - chemistry ; Macromolecules ; Models, Chemical ; Models, Molecular ; Molecular weight ; Physiological aspects ; Properties ; Protein Conformation ; Protein Folding ; Proteins ; Structure ; Studies ; Test systems</subject><ispartof>PLoS computational biology, 2010-03, Vol.6 (3), p.e1000694-e1000694</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>McGuffee, Elcock. 2010</rights><rights>2010 McGuffee, Elcock. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: McGuffee SR, Elcock AH (2010) Diffusion, Crowding &amp; Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm. PLoS Comput Biol 6(3): e1000694. doi:10.1371/journal.pcbi.1000694</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</citedby><cites>FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832674/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832674/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20221255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Briggs, James M.</contributor><creatorcontrib>McGuffee, Sean R</creatorcontrib><creatorcontrib>Elcock, Adrian H</creatorcontrib><title>Diffusion, crowding &amp; protein stability in a dynamic molecular model of the bacterial cytoplasm</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.</description><subject>Aqueous solutions</subject><subject>Biophysics/Macromolecular Assemblies and Machines</subject><subject>Biophysics/Protein Folding</subject><subject>Biophysics/Theory and Simulation</subject><subject>Computational Biology/Molecular Dynamics</subject><subject>Computer Simulation</subject><subject>Cytoplasm</subject><subject>Cytoplasm - chemistry</subject><subject>Diffusion</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Macromolecules</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular weight</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Structure</subject><subject>Studies</subject><subject>Test systems</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVUttuEzEQXSEQLYU_QOAnEBIJvnv9glSVW6QKJC7PlteX1JV3HWwvkL_HIWnVPKJ58HjmzJnx-HTdUwSXiAj05jrNedJxuTFDWCIIIZf0XneKGCMLQVh__45_0j0q5RrC5kr-sDvBEGOEGTvt1Lvg_VxCml4Dk9NvG6Y1eAE2OVUXJlCqHkIMdQvaRQO7nfQYDBhTdGaOOjfPugiSB_XKgUGb6nLQEZhtTZuoy_i4e-B1LO7J4Tzrfnx4__3i0-Lyy8fVxfnlwnAB60JKwaHlvMeYeNtr4gdsKLUSMccHIWlPkWeGUUNajpMW4D3pnUcCWiMQOeue73k3MRV12E1RiDTjAkHZEKs9wiZ9rTY5jDpvVdJB_QukvFY612CiU4Z5LSzCaGCEOo0kH6S3zPRMUNm6N663h27zMDpr3FSzjkekx5kpXKl1-qVwTzAXtBG8PBDk9HN2paoxFONi1JNLc1GCEEIlZ6Ihl3vkWrfJwuRTIzTNrGs_kSbnQ4uft71hLCDezfbqqKBhqvtT13ouRa2-ff0P7OdjLN1jm0xKyc7fPhdBtVPkzdbVTpHqoMhW9uzuqm6LbiRI_gKetd0L</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>McGuffee, Sean R</creator><creator>Elcock, Adrian H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100301</creationdate><title>Diffusion, crowding &amp; protein stability in a dynamic molecular model of the bacterial cytoplasm</title><author>McGuffee, Sean R ; Elcock, Adrian H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-99760d668223fd8a3fb2c44d915e6b794841f5c54c3a3f639486838ef170dc713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous solutions</topic><topic>Biophysics/Macromolecular Assemblies and Machines</topic><topic>Biophysics/Protein Folding</topic><topic>Biophysics/Theory and Simulation</topic><topic>Computational Biology/Molecular Dynamics</topic><topic>Computer Simulation</topic><topic>Cytoplasm</topic><topic>Cytoplasm - chemistry</topic><topic>Diffusion</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Macromolecules</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular weight</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Structure</topic><topic>Studies</topic><topic>Test systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuffee, Sean R</creatorcontrib><creatorcontrib>Elcock, Adrian H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGuffee, Sean R</au><au>Elcock, Adrian H</au><au>Briggs, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion, crowding &amp; protein stability in a dynamic molecular model of the bacterial cytoplasm</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>6</volume><issue>3</issue><spage>e1000694</spage><epage>e1000694</epage><pages>e1000694-e1000694</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and "snapshots" of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited "crowding" effect must be included in attempts to understand macromolecular behavior in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20221255</pmid><doi>10.1371/journal.pcbi.1000694</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-03, Vol.6 (3), p.e1000694-e1000694
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313167109
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aqueous solutions
Biophysics/Macromolecular Assemblies and Machines
Biophysics/Protein Folding
Biophysics/Theory and Simulation
Computational Biology/Molecular Dynamics
Computer Simulation
Cytoplasm
Cytoplasm - chemistry
Diffusion
E coli
Escherichia coli
Escherichia coli - chemistry
Escherichia coli Proteins - chemistry
Macromolecules
Models, Chemical
Models, Molecular
Molecular weight
Physiological aspects
Properties
Protein Conformation
Protein Folding
Proteins
Structure
Studies
Test systems
title Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion,%20crowding%20&%20protein%20stability%20in%20a%20dynamic%20molecular%20model%20of%20the%20bacterial%20cytoplasm&rft.jtitle=PLoS%20computational%20biology&rft.au=McGuffee,%20Sean%20R&rft.date=2010-03-01&rft.volume=6&rft.issue=3&rft.spage=e1000694&rft.epage=e1000694&rft.pages=e1000694-e1000694&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000694&rft_dat=%3Cgale_plos_%3EA223227023%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733349657&rft_id=info:pmid/20221255&rft_galeid=A223227023&rft_doaj_id=oai_doaj_org_article_c5fa7d121b534ea196b9fd5c85749f63&rfr_iscdi=true