OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions

Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2010-04, Vol.6 (4), p.e1000744-e1000744
Hauptverfasser: Ranganathan, Sridhar, Suthers, Patrick F, Maranas, Costas D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000744
container_issue 4
container_start_page e1000744
container_title PLoS computational biology
container_volume 6
creator Ranganathan, Sridhar
Suthers, Patrick F
Maranas, Costas D
description Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.
doi_str_mv 10.1371/journal.pcbi.1000744
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313167034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A225937783</galeid><doaj_id>oai_doaj_org_article_e203e2d03ca145f3b4860a50a2abcc4b</doaj_id><sourcerecordid>A225937783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEomXgDRBkh7qYwY6dOGGBVFUtjFRRicvaOrFPgkdOnNpORXl6PJdWnSXywpb9_f_xuWTZW0pWlAn6ceNmP4JdTao1K0oIEZw_y05pWbKlYGX9_Mn5JHsVwoaQdGyql9lJQThtaMlOs9ubKV45r_BTDmPupmgG8xeicWM-eadQzx7zzvncaByj6e7N2Odgbd7jiNGofIDRTLPdSUJuEfSWiC6P4HuMqHN3hz556VntmNfZiw5swDeHfZH9urr8efF1eX3zZX1xfr1UlSBxWXMNWlSKtqyhqAThnGtVEQZVQZToOlWzphaaCCgUb1ldNQUIglBS2nBWsUX2fu87WRfkoVpBUpZWisB4ItZ7QjvYyMmbAfy9dGDk7sL5XoJPOVqUWBCGhSZMAeVlx1peVwRKAgW0aht-kX0-RJvbAbVKxfJgj0yPX0bzW_buThZ1alLRJIMPBwPvbmcMUQ4mKLQWRnRzkIKxihOWerjIVnuyh_QzM3YuGaq0NA5GuRE7k-7Pi6JsmBA1S4KzI0FiIv6JPcwhyPWP7__Bfjtm-Z5V3oXgsXtMlxK5ndGHqsvtjMrDjCbZu6elehQ9DCX7B1GL5fM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733640300</pqid></control><display><type>article</type><title>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ranganathan, Sridhar ; Suthers, Patrick F ; Maranas, Costas D</creator><creatorcontrib>Ranganathan, Sridhar ; Suthers, Patrick F ; Maranas, Costas D</creatorcontrib><description>Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000744</identifier><identifier>PMID: 20419153</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biochemistry/Bioinformatics ; Biomass ; Biotechnology/Bioengineering ; Chemical properties ; Computational Biology/Metabolic Networks ; Computational Biology/Systems Biology ; Computer Simulation ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Experiments ; Gene expression ; Gene Expression Regulation ; Genetic aspects ; Genetic engineering ; Genetic Engineering - methods ; Health aspects ; Mathematical models ; Mathematical optimization ; Metabolic Networks and Pathways ; Microbiology ; Models, Genetic ; Models, Statistical ; Studies ; Succinates ; Succinic Acid - metabolism ; Systems Biology - methods</subject><ispartof>PLoS computational biology, 2010-04, Vol.6 (4), p.e1000744-e1000744</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Ranganathan et al. 2010</rights><rights>2010 Ranganathan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions. PLoS Comput Biol 6(4): e1000744. doi:10.1371/journal.pcbi.1000744</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</citedby><cites>FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20419153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranganathan, Sridhar</creatorcontrib><creatorcontrib>Suthers, Patrick F</creatorcontrib><creatorcontrib>Maranas, Costas D</creatorcontrib><title>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.</description><subject>Algorithms</subject><subject>Biochemistry/Bioinformatics</subject><subject>Biomass</subject><subject>Biotechnology/Bioengineering</subject><subject>Chemical properties</subject><subject>Computational Biology/Metabolic Networks</subject><subject>Computational Biology/Systems Biology</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Health aspects</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Metabolic Networks and Pathways</subject><subject>Microbiology</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Studies</subject><subject>Succinates</subject><subject>Succinic Acid - metabolism</subject><subject>Systems Biology - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1DAUhiMEomXgDRBkh7qYwY6dOGGBVFUtjFRRicvaOrFPgkdOnNpORXl6PJdWnSXywpb9_f_xuWTZW0pWlAn6ceNmP4JdTao1K0oIEZw_y05pWbKlYGX9_Mn5JHsVwoaQdGyql9lJQThtaMlOs9ubKV45r_BTDmPupmgG8xeicWM-eadQzx7zzvncaByj6e7N2Odgbd7jiNGofIDRTLPdSUJuEfSWiC6P4HuMqHN3hz556VntmNfZiw5swDeHfZH9urr8efF1eX3zZX1xfr1UlSBxWXMNWlSKtqyhqAThnGtVEQZVQZToOlWzphaaCCgUb1ldNQUIglBS2nBWsUX2fu87WRfkoVpBUpZWisB4ItZ7QjvYyMmbAfy9dGDk7sL5XoJPOVqUWBCGhSZMAeVlx1peVwRKAgW0aht-kX0-RJvbAbVKxfJgj0yPX0bzW_buThZ1alLRJIMPBwPvbmcMUQ4mKLQWRnRzkIKxihOWerjIVnuyh_QzM3YuGaq0NA5GuRE7k-7Pi6JsmBA1S4KzI0FiIv6JPcwhyPWP7__Bfjtm-Z5V3oXgsXtMlxK5ndGHqsvtjMrDjCbZu6elehQ9DCX7B1GL5fM</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ranganathan, Sridhar</creator><creator>Suthers, Patrick F</creator><creator>Maranas, Costas D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100401</creationdate><title>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</title><author>Ranganathan, Sridhar ; Suthers, Patrick F ; Maranas, Costas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biochemistry/Bioinformatics</topic><topic>Biomass</topic><topic>Biotechnology/Bioengineering</topic><topic>Chemical properties</topic><topic>Computational Biology/Metabolic Networks</topic><topic>Computational Biology/Systems Biology</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Health aspects</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Metabolic Networks and Pathways</topic><topic>Microbiology</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Studies</topic><topic>Succinates</topic><topic>Succinic Acid - metabolism</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranganathan, Sridhar</creatorcontrib><creatorcontrib>Suthers, Patrick F</creatorcontrib><creatorcontrib>Maranas, Costas D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranganathan, Sridhar</au><au>Suthers, Patrick F</au><au>Maranas, Costas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>6</volume><issue>4</issue><spage>e1000744</spage><epage>e1000744</epage><pages>e1000744-e1000744</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20419153</pmid><doi>10.1371/journal.pcbi.1000744</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2010-04, Vol.6 (4), p.e1000744-e1000744
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1313167034
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Algorithms
Biochemistry/Bioinformatics
Biomass
Biotechnology/Bioengineering
Chemical properties
Computational Biology/Metabolic Networks
Computational Biology/Systems Biology
Computer Simulation
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Experiments
Gene expression
Gene Expression Regulation
Genetic aspects
Genetic engineering
Genetic Engineering - methods
Health aspects
Mathematical models
Mathematical optimization
Metabolic Networks and Pathways
Microbiology
Models, Genetic
Models, Statistical
Studies
Succinates
Succinic Acid - metabolism
Systems Biology - methods
title OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OptForce:%20an%20optimization%20procedure%20for%20identifying%20all%20genetic%20manipulations%20leading%20to%20targeted%20overproductions&rft.jtitle=PLoS%20computational%20biology&rft.au=Ranganathan,%20Sridhar&rft.date=2010-04-01&rft.volume=6&rft.issue=4&rft.spage=e1000744&rft.epage=e1000744&rft.pages=e1000744-e1000744&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000744&rft_dat=%3Cgale_plos_%3EA225937783%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733640300&rft_id=info:pmid/20419153&rft_galeid=A225937783&rft_doaj_id=oai_doaj_org_article_e203e2d03ca145f3b4860a50a2abcc4b&rfr_iscdi=true