OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of f...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2010-04, Vol.6 (4), p.e1000744-e1000744 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000744 |
---|---|
container_issue | 4 |
container_start_page | e1000744 |
container_title | PLoS computational biology |
container_volume | 6 |
creator | Ranganathan, Sridhar Suthers, Patrick F Maranas, Costas D |
description | Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis. |
doi_str_mv | 10.1371/journal.pcbi.1000744 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313167034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A225937783</galeid><doaj_id>oai_doaj_org_article_e203e2d03ca145f3b4860a50a2abcc4b</doaj_id><sourcerecordid>A225937783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEomXgDRBkh7qYwY6dOGGBVFUtjFRRicvaOrFPgkdOnNpORXl6PJdWnSXywpb9_f_xuWTZW0pWlAn6ceNmP4JdTao1K0oIEZw_y05pWbKlYGX9_Mn5JHsVwoaQdGyql9lJQThtaMlOs9ubKV45r_BTDmPupmgG8xeicWM-eadQzx7zzvncaByj6e7N2Odgbd7jiNGofIDRTLPdSUJuEfSWiC6P4HuMqHN3hz556VntmNfZiw5swDeHfZH9urr8efF1eX3zZX1xfr1UlSBxWXMNWlSKtqyhqAThnGtVEQZVQZToOlWzphaaCCgUb1ldNQUIglBS2nBWsUX2fu87WRfkoVpBUpZWisB4ItZ7QjvYyMmbAfy9dGDk7sL5XoJPOVqUWBCGhSZMAeVlx1peVwRKAgW0aht-kX0-RJvbAbVKxfJgj0yPX0bzW_buThZ1alLRJIMPBwPvbmcMUQ4mKLQWRnRzkIKxihOWerjIVnuyh_QzM3YuGaq0NA5GuRE7k-7Pi6JsmBA1S4KzI0FiIv6JPcwhyPWP7__Bfjtm-Z5V3oXgsXtMlxK5ndGHqsvtjMrDjCbZu6elehQ9DCX7B1GL5fM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733640300</pqid></control><display><type>article</type><title>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ranganathan, Sridhar ; Suthers, Patrick F ; Maranas, Costas D</creator><creatorcontrib>Ranganathan, Sridhar ; Suthers, Patrick F ; Maranas, Costas D</creatorcontrib><description>Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000744</identifier><identifier>PMID: 20419153</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biochemistry/Bioinformatics ; Biomass ; Biotechnology/Bioengineering ; Chemical properties ; Computational Biology/Metabolic Networks ; Computational Biology/Systems Biology ; Computer Simulation ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Experiments ; Gene expression ; Gene Expression Regulation ; Genetic aspects ; Genetic engineering ; Genetic Engineering - methods ; Health aspects ; Mathematical models ; Mathematical optimization ; Metabolic Networks and Pathways ; Microbiology ; Models, Genetic ; Models, Statistical ; Studies ; Succinates ; Succinic Acid - metabolism ; Systems Biology - methods</subject><ispartof>PLoS computational biology, 2010-04, Vol.6 (4), p.e1000744-e1000744</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Ranganathan et al. 2010</rights><rights>2010 Ranganathan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions. PLoS Comput Biol 6(4): e1000744. doi:10.1371/journal.pcbi.1000744</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</citedby><cites>FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20419153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranganathan, Sridhar</creatorcontrib><creatorcontrib>Suthers, Patrick F</creatorcontrib><creatorcontrib>Maranas, Costas D</creatorcontrib><title>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.</description><subject>Algorithms</subject><subject>Biochemistry/Bioinformatics</subject><subject>Biomass</subject><subject>Biotechnology/Bioengineering</subject><subject>Chemical properties</subject><subject>Computational Biology/Metabolic Networks</subject><subject>Computational Biology/Systems Biology</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Health aspects</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Metabolic Networks and Pathways</subject><subject>Microbiology</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Studies</subject><subject>Succinates</subject><subject>Succinic Acid - metabolism</subject><subject>Systems Biology - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1DAUhiMEomXgDRBkh7qYwY6dOGGBVFUtjFRRicvaOrFPgkdOnNpORXl6PJdWnSXywpb9_f_xuWTZW0pWlAn6ceNmP4JdTao1K0oIEZw_y05pWbKlYGX9_Mn5JHsVwoaQdGyql9lJQThtaMlOs9ubKV45r_BTDmPupmgG8xeicWM-eadQzx7zzvncaByj6e7N2Odgbd7jiNGofIDRTLPdSUJuEfSWiC6P4HuMqHN3hz556VntmNfZiw5swDeHfZH9urr8efF1eX3zZX1xfr1UlSBxWXMNWlSKtqyhqAThnGtVEQZVQZToOlWzphaaCCgUb1ldNQUIglBS2nBWsUX2fu87WRfkoVpBUpZWisB4ItZ7QjvYyMmbAfy9dGDk7sL5XoJPOVqUWBCGhSZMAeVlx1peVwRKAgW0aht-kX0-RJvbAbVKxfJgj0yPX0bzW_buThZ1alLRJIMPBwPvbmcMUQ4mKLQWRnRzkIKxihOWerjIVnuyh_QzM3YuGaq0NA5GuRE7k-7Pi6JsmBA1S4KzI0FiIv6JPcwhyPWP7__Bfjtm-Z5V3oXgsXtMlxK5ndGHqsvtjMrDjCbZu6elehQ9DCX7B1GL5fM</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ranganathan, Sridhar</creator><creator>Suthers, Patrick F</creator><creator>Maranas, Costas D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100401</creationdate><title>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</title><author>Ranganathan, Sridhar ; Suthers, Patrick F ; Maranas, Costas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-84dad76c1b391ec70444dc603a620c7ffc83987d07a2c4b38692a70ea51194363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biochemistry/Bioinformatics</topic><topic>Biomass</topic><topic>Biotechnology/Bioengineering</topic><topic>Chemical properties</topic><topic>Computational Biology/Metabolic Networks</topic><topic>Computational Biology/Systems Biology</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Health aspects</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Metabolic Networks and Pathways</topic><topic>Microbiology</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Studies</topic><topic>Succinates</topic><topic>Succinic Acid - metabolism</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranganathan, Sridhar</creatorcontrib><creatorcontrib>Suthers, Patrick F</creatorcontrib><creatorcontrib>Maranas, Costas D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranganathan, Sridhar</au><au>Suthers, Patrick F</au><au>Maranas, Costas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>6</volume><issue>4</issue><spage>e1000744</spage><epage>e1000744</epage><pages>e1000744-e1000744</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20419153</pmid><doi>10.1371/journal.pcbi.1000744</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2010-04, Vol.6 (4), p.e1000744-e1000744 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1313167034 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Algorithms Biochemistry/Bioinformatics Biomass Biotechnology/Bioengineering Chemical properties Computational Biology/Metabolic Networks Computational Biology/Systems Biology Computer Simulation E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Experiments Gene expression Gene Expression Regulation Genetic aspects Genetic engineering Genetic Engineering - methods Health aspects Mathematical models Mathematical optimization Metabolic Networks and Pathways Microbiology Models, Genetic Models, Statistical Studies Succinates Succinic Acid - metabolism Systems Biology - methods |
title | OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OptForce:%20an%20optimization%20procedure%20for%20identifying%20all%20genetic%20manipulations%20leading%20to%20targeted%20overproductions&rft.jtitle=PLoS%20computational%20biology&rft.au=Ranganathan,%20Sridhar&rft.date=2010-04-01&rft.volume=6&rft.issue=4&rft.spage=e1000744&rft.epage=e1000744&rft.pages=e1000744-e1000744&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000744&rft_dat=%3Cgale_plos_%3EA225937783%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733640300&rft_id=info:pmid/20419153&rft_galeid=A225937783&rft_doaj_id=oai_doaj_org_article_e203e2d03ca145f3b4860a50a2abcc4b&rfr_iscdi=true |