Toward a detailed description of the thermally induced dynamics of the core promoter
Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional star...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2009-03, Vol.5 (3), p.e1000313-e1000313 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000313 |
---|---|
container_issue | 3 |
container_start_page | e1000313 |
container_title | PLoS computational biology |
container_volume | 5 |
creator | Alexandrov, Boian S Gelev, Vladimir Yoo, Sang Wook Bishop, Alan R Rasmussen, Kim Ø Usheva, Anny |
description | Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors. |
doi_str_mv | 10.1371/journal.pcbi.1000313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1312475288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_83b2dfe134fa436ba8bfce9ff127603f</doaj_id><sourcerecordid>67030501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEoqXwDxBEHLjt4rFjJ74goaqFSpW4LGfLccZdr5w42E7R_nsSNoX2xMHyyP7mjf30iuItkC2wGj4dwhQH7bejad0WCCEM2LPiHDhnm5rx5vmj-qx4ldJhRngjxcviDCRtqBT0vNjtwi8du1KXHWbtPHZzkUx0Y3ZhKIMt8x6XFXvt_bF0QzeZBToOuncmPRAmRCzHGPqQMb4uXljtE75Z94vix_XV7vLb5vb715vLL7cbw3mVN5WklIuaQNVxIMzUkkAjpKgtttRCS7EFLjjDutNUtx1BaBopmUSGrDaWXRTvT7qjD0mthiQFDGhVc9o0M3FzIrqgD2qMrtfxqIJ26s9BiHdKx-yMR9WwlnYWgVVWV0y0ummtQWkt0FoQtkz7vE6b2h47g0OO2j8RfXozuL26C_eKiopzImaBDyeBkLJTybiMZm_CMKDJCgStQcIMfVynxPBzwpRV75JB7_WAYUpq9osRTv4P0sUEwhcPqhNoYkgpov37ZCBqidKDc2qJklqjNLe9e_zdf01rdthvO9jHfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21247058</pqid></control><display><type>article</type><title>Toward a detailed description of the thermally induced dynamics of the core promoter</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Alexandrov, Boian S ; Gelev, Vladimir ; Yoo, Sang Wook ; Bishop, Alan R ; Rasmussen, Kim Ø ; Usheva, Anny</creator><contributor>Briggs, James M.</contributor><creatorcontrib>Alexandrov, Boian S ; Gelev, Vladimir ; Yoo, Sang Wook ; Bishop, Alan R ; Rasmussen, Kim Ø ; Usheva, Anny ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Briggs, James M.</creatorcontrib><description>Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000313</identifier><identifier>PMID: 19282962</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Biochemistry & Molecular Biology ; Computational Biology/Transcriptional Regulation ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - ultrastructure ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - ultrastructure ; Enzymes ; Experiments ; Genetics ; Hot Temperature ; Mathematical & Computational Biology ; Models, Chemical ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Phase transitions ; Promoter Regions, Genetic ; RNA polymerase ; Sequence Analysis, DNA - methods</subject><ispartof>PLoS computational biology, 2009-03, Vol.5 (3), p.e1000313-e1000313</ispartof><rights>Alexandrov et al. 2009</rights><rights>2009 Alexandrov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Alexandrov BS, Gelev V, Yoo SW, Bishop AR, Rasmussen KØ, et al. (2009) Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter. PLoS Comput Biol 5(3): e1000313. doi:10.1371/journal.pcbi.1000313</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</citedby><cites>FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645506/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645506/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19282962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627191$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Briggs, James M.</contributor><creatorcontrib>Alexandrov, Boian S</creatorcontrib><creatorcontrib>Gelev, Vladimir</creatorcontrib><creatorcontrib>Yoo, Sang Wook</creatorcontrib><creatorcontrib>Bishop, Alan R</creatorcontrib><creatorcontrib>Rasmussen, Kim Ø</creatorcontrib><creatorcontrib>Usheva, Anny</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Toward a detailed description of the thermally induced dynamics of the core promoter</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.</description><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry & Molecular Biology</subject><subject>Computational Biology/Transcriptional Regulation</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - ultrastructure</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Genetics</subject><subject>Hot Temperature</subject><subject>Mathematical & Computational Biology</subject><subject>Models, Chemical</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Phase transitions</subject><subject>Promoter Regions, Genetic</subject><subject>RNA polymerase</subject><subject>Sequence Analysis, DNA - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqFkkFv1DAQhSMEoqXwDxBEHLjt4rFjJ74goaqFSpW4LGfLccZdr5w42E7R_nsSNoX2xMHyyP7mjf30iuItkC2wGj4dwhQH7bejad0WCCEM2LPiHDhnm5rx5vmj-qx4ldJhRngjxcviDCRtqBT0vNjtwi8du1KXHWbtPHZzkUx0Y3ZhKIMt8x6XFXvt_bF0QzeZBToOuncmPRAmRCzHGPqQMb4uXljtE75Z94vix_XV7vLb5vb715vLL7cbw3mVN5WklIuaQNVxIMzUkkAjpKgtttRCS7EFLjjDutNUtx1BaBopmUSGrDaWXRTvT7qjD0mthiQFDGhVc9o0M3FzIrqgD2qMrtfxqIJ26s9BiHdKx-yMR9WwlnYWgVVWV0y0ummtQWkt0FoQtkz7vE6b2h47g0OO2j8RfXozuL26C_eKiopzImaBDyeBkLJTybiMZm_CMKDJCgStQcIMfVynxPBzwpRV75JB7_WAYUpq9osRTv4P0sUEwhcPqhNoYkgpov37ZCBqidKDc2qJklqjNLe9e_zdf01rdthvO9jHfg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Alexandrov, Boian S</creator><creator>Gelev, Vladimir</creator><creator>Yoo, Sang Wook</creator><creator>Bishop, Alan R</creator><creator>Rasmussen, Kim Ø</creator><creator>Usheva, Anny</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090301</creationdate><title>Toward a detailed description of the thermally induced dynamics of the core promoter</title><author>Alexandrov, Boian S ; Gelev, Vladimir ; Yoo, Sang Wook ; Bishop, Alan R ; Rasmussen, Kim Ø ; Usheva, Anny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry & Molecular Biology</topic><topic>Computational Biology/Transcriptional Regulation</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - ultrastructure</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Genetics</topic><topic>Hot Temperature</topic><topic>Mathematical & Computational Biology</topic><topic>Models, Chemical</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Phase transitions</topic><topic>Promoter Regions, Genetic</topic><topic>RNA polymerase</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandrov, Boian S</creatorcontrib><creatorcontrib>Gelev, Vladimir</creatorcontrib><creatorcontrib>Yoo, Sang Wook</creatorcontrib><creatorcontrib>Bishop, Alan R</creatorcontrib><creatorcontrib>Rasmussen, Kim Ø</creatorcontrib><creatorcontrib>Usheva, Anny</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrov, Boian S</au><au>Gelev, Vladimir</au><au>Yoo, Sang Wook</au><au>Bishop, Alan R</au><au>Rasmussen, Kim Ø</au><au>Usheva, Anny</au><au>Briggs, James M.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a detailed description of the thermally induced dynamics of the core promoter</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>5</volume><issue>3</issue><spage>e1000313</spage><epage>e1000313</epage><pages>e1000313-e1000313</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19282962</pmid><doi>10.1371/journal.pcbi.1000313</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2009-03, Vol.5 (3), p.e1000313-e1000313 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1312475288 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Base Sequence BASIC BIOLOGICAL SCIENCES Biochemistry & Molecular Biology Computational Biology/Transcriptional Regulation Computer Simulation Deoxyribonucleic acid DNA DNA - chemistry DNA - ultrastructure DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - ultrastructure Enzymes Experiments Genetics Hot Temperature Mathematical & Computational Biology Models, Chemical Models, Genetic Models, Molecular Molecular Sequence Data Phase transitions Promoter Regions, Genetic RNA polymerase Sequence Analysis, DNA - methods |
title | Toward a detailed description of the thermally induced dynamics of the core promoter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20detailed%20description%20of%20the%20thermally%20induced%20dynamics%20of%20the%20core%20promoter&rft.jtitle=PLoS%20computational%20biology&rft.au=Alexandrov,%20Boian%20S&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2009-03-01&rft.volume=5&rft.issue=3&rft.spage=e1000313&rft.epage=e1000313&rft.pages=e1000313-e1000313&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000313&rft_dat=%3Cproquest_plos_%3E67030501%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21247058&rft_id=info:pmid/19282962&rft_doaj_id=oai_doaj_org_article_83b2dfe134fa436ba8bfce9ff127603f&rfr_iscdi=true |