Toward a detailed description of the thermally induced dynamics of the core promoter

Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional star...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2009-03, Vol.5 (3), p.e1000313-e1000313
Hauptverfasser: Alexandrov, Boian S, Gelev, Vladimir, Yoo, Sang Wook, Bishop, Alan R, Rasmussen, Kim Ø, Usheva, Anny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000313
container_issue 3
container_start_page e1000313
container_title PLoS computational biology
container_volume 5
creator Alexandrov, Boian S
Gelev, Vladimir
Yoo, Sang Wook
Bishop, Alan R
Rasmussen, Kim Ø
Usheva, Anny
description Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.
doi_str_mv 10.1371/journal.pcbi.1000313
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1312475288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_83b2dfe134fa436ba8bfce9ff127603f</doaj_id><sourcerecordid>67030501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEoqXwDxBEHLjt4rFjJ74goaqFSpW4LGfLccZdr5w42E7R_nsSNoX2xMHyyP7mjf30iuItkC2wGj4dwhQH7bejad0WCCEM2LPiHDhnm5rx5vmj-qx4ldJhRngjxcviDCRtqBT0vNjtwi8du1KXHWbtPHZzkUx0Y3ZhKIMt8x6XFXvt_bF0QzeZBToOuncmPRAmRCzHGPqQMb4uXljtE75Z94vix_XV7vLb5vb715vLL7cbw3mVN5WklIuaQNVxIMzUkkAjpKgtttRCS7EFLjjDutNUtx1BaBopmUSGrDaWXRTvT7qjD0mthiQFDGhVc9o0M3FzIrqgD2qMrtfxqIJ26s9BiHdKx-yMR9WwlnYWgVVWV0y0ummtQWkt0FoQtkz7vE6b2h47g0OO2j8RfXozuL26C_eKiopzImaBDyeBkLJTybiMZm_CMKDJCgStQcIMfVynxPBzwpRV75JB7_WAYUpq9osRTv4P0sUEwhcPqhNoYkgpov37ZCBqidKDc2qJklqjNLe9e_zdf01rdthvO9jHfg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21247058</pqid></control><display><type>article</type><title>Toward a detailed description of the thermally induced dynamics of the core promoter</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Alexandrov, Boian S ; Gelev, Vladimir ; Yoo, Sang Wook ; Bishop, Alan R ; Rasmussen, Kim Ø ; Usheva, Anny</creator><contributor>Briggs, James M.</contributor><creatorcontrib>Alexandrov, Boian S ; Gelev, Vladimir ; Yoo, Sang Wook ; Bishop, Alan R ; Rasmussen, Kim Ø ; Usheva, Anny ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Briggs, James M.</creatorcontrib><description>Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000313</identifier><identifier>PMID: 19282962</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Biochemistry &amp; Molecular Biology ; Computational Biology/Transcriptional Regulation ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - ultrastructure ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - ultrastructure ; Enzymes ; Experiments ; Genetics ; Hot Temperature ; Mathematical &amp; Computational Biology ; Models, Chemical ; Models, Genetic ; Models, Molecular ; Molecular Sequence Data ; Phase transitions ; Promoter Regions, Genetic ; RNA polymerase ; Sequence Analysis, DNA - methods</subject><ispartof>PLoS computational biology, 2009-03, Vol.5 (3), p.e1000313-e1000313</ispartof><rights>Alexandrov et al. 2009</rights><rights>2009 Alexandrov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Alexandrov BS, Gelev V, Yoo SW, Bishop AR, Rasmussen KØ, et al. (2009) Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter. PLoS Comput Biol 5(3): e1000313. doi:10.1371/journal.pcbi.1000313</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</citedby><cites>FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645506/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645506/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19282962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627191$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Briggs, James M.</contributor><creatorcontrib>Alexandrov, Boian S</creatorcontrib><creatorcontrib>Gelev, Vladimir</creatorcontrib><creatorcontrib>Yoo, Sang Wook</creatorcontrib><creatorcontrib>Bishop, Alan R</creatorcontrib><creatorcontrib>Rasmussen, Kim Ø</creatorcontrib><creatorcontrib>Usheva, Anny</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Toward a detailed description of the thermally induced dynamics of the core promoter</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.</description><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Computational Biology/Transcriptional Regulation</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - ultrastructure</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Genetics</subject><subject>Hot Temperature</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Models, Chemical</subject><subject>Models, Genetic</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Phase transitions</subject><subject>Promoter Regions, Genetic</subject><subject>RNA polymerase</subject><subject>Sequence Analysis, DNA - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqFkkFv1DAQhSMEoqXwDxBEHLjt4rFjJ74goaqFSpW4LGfLccZdr5w42E7R_nsSNoX2xMHyyP7mjf30iuItkC2wGj4dwhQH7bejad0WCCEM2LPiHDhnm5rx5vmj-qx4ldJhRngjxcviDCRtqBT0vNjtwi8du1KXHWbtPHZzkUx0Y3ZhKIMt8x6XFXvt_bF0QzeZBToOuncmPRAmRCzHGPqQMb4uXljtE75Z94vix_XV7vLb5vb715vLL7cbw3mVN5WklIuaQNVxIMzUkkAjpKgtttRCS7EFLjjDutNUtx1BaBopmUSGrDaWXRTvT7qjD0mthiQFDGhVc9o0M3FzIrqgD2qMrtfxqIJ26s9BiHdKx-yMR9WwlnYWgVVWV0y0ummtQWkt0FoQtkz7vE6b2h47g0OO2j8RfXozuL26C_eKiopzImaBDyeBkLJTybiMZm_CMKDJCgStQcIMfVynxPBzwpRV75JB7_WAYUpq9osRTv4P0sUEwhcPqhNoYkgpov37ZCBqidKDc2qJklqjNLe9e_zdf01rdthvO9jHfg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Alexandrov, Boian S</creator><creator>Gelev, Vladimir</creator><creator>Yoo, Sang Wook</creator><creator>Bishop, Alan R</creator><creator>Rasmussen, Kim Ø</creator><creator>Usheva, Anny</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090301</creationdate><title>Toward a detailed description of the thermally induced dynamics of the core promoter</title><author>Alexandrov, Boian S ; Gelev, Vladimir ; Yoo, Sang Wook ; Bishop, Alan R ; Rasmussen, Kim Ø ; Usheva, Anny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-4922567014d5103c790186967feb2f1b2eb15653e7da2abd0e1889939e3e37cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Computational Biology/Transcriptional Regulation</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - ultrastructure</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Genetics</topic><topic>Hot Temperature</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Models, Chemical</topic><topic>Models, Genetic</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Phase transitions</topic><topic>Promoter Regions, Genetic</topic><topic>RNA polymerase</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandrov, Boian S</creatorcontrib><creatorcontrib>Gelev, Vladimir</creatorcontrib><creatorcontrib>Yoo, Sang Wook</creatorcontrib><creatorcontrib>Bishop, Alan R</creatorcontrib><creatorcontrib>Rasmussen, Kim Ø</creatorcontrib><creatorcontrib>Usheva, Anny</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrov, Boian S</au><au>Gelev, Vladimir</au><au>Yoo, Sang Wook</au><au>Bishop, Alan R</au><au>Rasmussen, Kim Ø</au><au>Usheva, Anny</au><au>Briggs, James M.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a detailed description of the thermally induced dynamics of the core promoter</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>5</volume><issue>3</issue><spage>e1000313</spage><epage>e1000313</epage><pages>e1000313-e1000313</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19282962</pmid><doi>10.1371/journal.pcbi.1000313</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2009-03, Vol.5 (3), p.e1000313-e1000313
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1312475288
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Base Sequence
BASIC BIOLOGICAL SCIENCES
Biochemistry & Molecular Biology
Computational Biology/Transcriptional Regulation
Computer Simulation
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - ultrastructure
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - ultrastructure
Enzymes
Experiments
Genetics
Hot Temperature
Mathematical & Computational Biology
Models, Chemical
Models, Genetic
Models, Molecular
Molecular Sequence Data
Phase transitions
Promoter Regions, Genetic
RNA polymerase
Sequence Analysis, DNA - methods
title Toward a detailed description of the thermally induced dynamics of the core promoter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20detailed%20description%20of%20the%20thermally%20induced%20dynamics%20of%20the%20core%20promoter&rft.jtitle=PLoS%20computational%20biology&rft.au=Alexandrov,%20Boian%20S&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2009-03-01&rft.volume=5&rft.issue=3&rft.spage=e1000313&rft.epage=e1000313&rft.pages=e1000313-e1000313&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000313&rft_dat=%3Cproquest_plos_%3E67030501%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21247058&rft_id=info:pmid/19282962&rft_doaj_id=oai_doaj_org_article_83b2dfe134fa436ba8bfce9ff127603f&rfr_iscdi=true