Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation
In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2007-03, Vol.3 (3), p.e45-e45 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e45 |
---|---|
container_issue | 3 |
container_start_page | e45 |
container_title | PLoS computational biology |
container_volume | 3 |
creator | Ciliberto, Andrea Capuani, Fabrizio Tyson, John J |
description | In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C) is much less than the free substrate concentration (S0). However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1) it unveils the modular structure of the enzymatic reactions, (2) it suggests a simple algorithm to formulate correct kinetic equations, and (3) contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively. |
doi_str_mv | 10.1371/journal.pcbi.0030045 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312472700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A165914358</galeid><doaj_id>oai_doaj_org_article_6427906e884540569b6eaa43c7c5dc93</doaj_id><sourcerecordid>A165914358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-58dfcf1674769242328a8da26138b9c95c55d2f63a71c9371edefda54d778a7e3</originalsourceid><addsrcrecordid>eNqVkkuP0zAUhSMEYobCP0AQCQmJRUscv5IN0mjEo9IAEo-1dWvfdFxSO2M7MOXX49IAU8QGeRHL-c65D52ieEiqBaGSPN_4MTjoF4Ne2UVV0api_FZxSjinc0l5c_vG_aS4F-MmQ7xpxd3ihEgqZF3R0wLeeoO9devSYfrmw5dY-q7Ufhx6NCW677stJKvLgKCT9S6WY9zT6RLL5BP05dUI0c5jQjC7MiZIWMIwBH9t90rv7hd3OugjPpi-s-Lzq5efzt_ML96_Xp6fXcy1aGWa88Z0uiNCMinamtW0bqAxUAtCm1WrW645N3UnKEii27wANNgZ4MxI2YBEOiseH3yH3kc1bScqQknNZC3z8LNieSCMh40aQm4w7JQHq34--LBWEPKwPSrBatlWApuGcVZx0a4EAjCqpeYml89eL6Zq42qLRqNLAfoj0-M_zl6qtf-qSFM3suLZ4OlkEPzViDGprY0a-x4c-jGqPcO4FBl88hf479kWB2oNuX3rOp-r6nwMbq32Djub38-I4C1hOQZZ8OxIkJmE12kNY4xq-fHDf7Dvjll2YHXwMQbsfu-EVGof3F_tq31w1RTcLHt0c59_RFNS6Q-Gf-sH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312472700</pqid></control><display><type>article</type><title>Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ciliberto, Andrea ; Capuani, Fabrizio ; Tyson, John J</creator><contributor>De Boer, Rob J</contributor><creatorcontrib>Ciliberto, Andrea ; Capuani, Fabrizio ; Tyson, John J ; De Boer, Rob J</creatorcontrib><description>In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C) is much less than the free substrate concentration (S0). However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1) it unveils the modular structure of the enzymatic reactions, (2) it suggests a simple algorithm to formulate correct kinetic equations, and (3) contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.0030045</identifier><identifier>PMID: 17367203</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algebra ; Algorithms ; Approximation theory ; Cell Biology ; Cell cycle ; Chemical reactions ; Computational Biology ; Computer Simulation ; Enzyme kinetics ; Eukaryotes ; Homeostasis - physiology ; Kinetics ; Mathematical models ; Metabolites ; Models, Biological ; Multienzyme Complexes - metabolism ; Ordinary differential equations ; Protein-protein interactions ; Signal Transduction - physiology ; Structure ; Studies</subject><ispartof>PLoS computational biology, 2007-03, Vol.3 (3), p.e45-e45</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Ciliberto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ciliberto A, Capuani F, Tyson JJ (2007) Modeling Networks of Coupled Enzymatic Reactions Using the Total Quasi-Steady State Approximation. PLoS Comput Biol 3(3): e45. doi:10.1371/journal.pcbi.0030045</rights><rights>2007 Ciliberto et al. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-58dfcf1674769242328a8da26138b9c95c55d2f63a71c9371edefda54d778a7e3</citedby><cites>FETCH-LOGICAL-c697t-58dfcf1674769242328a8da26138b9c95c55d2f63a71c9371edefda54d778a7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828705/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828705/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17367203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>De Boer, Rob J</contributor><creatorcontrib>Ciliberto, Andrea</creatorcontrib><creatorcontrib>Capuani, Fabrizio</creatorcontrib><creatorcontrib>Tyson, John J</creatorcontrib><title>Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C) is much less than the free substrate concentration (S0). However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1) it unveils the modular structure of the enzymatic reactions, (2) it suggests a simple algorithm to formulate correct kinetic equations, and (3) contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Approximation theory</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Chemical reactions</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Enzyme kinetics</subject><subject>Eukaryotes</subject><subject>Homeostasis - physiology</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Metabolites</subject><subject>Models, Biological</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Ordinary differential equations</subject><subject>Protein-protein interactions</subject><subject>Signal Transduction - physiology</subject><subject>Structure</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAUhSMEYobCP0AQCQmJRUscv5IN0mjEo9IAEo-1dWvfdFxSO2M7MOXX49IAU8QGeRHL-c65D52ieEiqBaGSPN_4MTjoF4Ne2UVV0api_FZxSjinc0l5c_vG_aS4F-MmQ7xpxd3ihEgqZF3R0wLeeoO9devSYfrmw5dY-q7Ufhx6NCW677stJKvLgKCT9S6WY9zT6RLL5BP05dUI0c5jQjC7MiZIWMIwBH9t90rv7hd3OugjPpi-s-Lzq5efzt_ML96_Xp6fXcy1aGWa88Z0uiNCMinamtW0bqAxUAtCm1WrW645N3UnKEii27wANNgZ4MxI2YBEOiseH3yH3kc1bScqQknNZC3z8LNieSCMh40aQm4w7JQHq34--LBWEPKwPSrBatlWApuGcVZx0a4EAjCqpeYml89eL6Zq42qLRqNLAfoj0-M_zl6qtf-qSFM3suLZ4OlkEPzViDGprY0a-x4c-jGqPcO4FBl88hf479kWB2oNuX3rOp-r6nwMbq32Djub38-I4C1hOQZZ8OxIkJmE12kNY4xq-fHDf7Dvjll2YHXwMQbsfu-EVGof3F_tq31w1RTcLHt0c59_RFNS6Q-Gf-sH</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Ciliberto, Andrea</creator><creator>Capuani, Fabrizio</creator><creator>Tyson, John J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20070301</creationdate><title>Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation</title><author>Ciliberto, Andrea ; Capuani, Fabrizio ; Tyson, John J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-58dfcf1674769242328a8da26138b9c95c55d2f63a71c9371edefda54d778a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Approximation theory</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Chemical reactions</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Enzyme kinetics</topic><topic>Eukaryotes</topic><topic>Homeostasis - physiology</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Metabolites</topic><topic>Models, Biological</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Ordinary differential equations</topic><topic>Protein-protein interactions</topic><topic>Signal Transduction - physiology</topic><topic>Structure</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciliberto, Andrea</creatorcontrib><creatorcontrib>Capuani, Fabrizio</creatorcontrib><creatorcontrib>Tyson, John J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciliberto, Andrea</au><au>Capuani, Fabrizio</au><au>Tyson, John J</au><au>De Boer, Rob J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>3</volume><issue>3</issue><spage>e45</spage><epage>e45</epage><pages>e45-e45</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C) is much less than the free substrate concentration (S0). However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1) it unveils the modular structure of the enzymatic reactions, (2) it suggests a simple algorithm to formulate correct kinetic equations, and (3) contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17367203</pmid><doi>10.1371/journal.pcbi.0030045</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2007-03, Vol.3 (3), p.e45-e45 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1312472700 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algebra Algorithms Approximation theory Cell Biology Cell cycle Chemical reactions Computational Biology Computer Simulation Enzyme kinetics Eukaryotes Homeostasis - physiology Kinetics Mathematical models Metabolites Models, Biological Multienzyme Complexes - metabolism Ordinary differential equations Protein-protein interactions Signal Transduction - physiology Structure Studies |
title | Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20networks%20of%20coupled%20enzymatic%20reactions%20using%20the%20total%20quasi-steady%20state%20approximation&rft.jtitle=PLoS%20computational%20biology&rft.au=Ciliberto,%20Andrea&rft.date=2007-03-01&rft.volume=3&rft.issue=3&rft.spage=e45&rft.epage=e45&rft.pages=e45-e45&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.0030045&rft_dat=%3Cgale_plos_%3EA165914358%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312472700&rft_id=info:pmid/17367203&rft_galeid=A165914358&rft_doaj_id=oai_doaj_org_article_6427906e884540569b6eaa43c7c5dc93&rfr_iscdi=true |