Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets
T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also osci...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2009-01, Vol.5 (1), p.e1000260-e1000260 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000260 |
---|---|
container_issue | 1 |
container_start_page | e1000260 |
container_title | PLoS computational biology |
container_volume | 5 |
creator | Kim, Mun Ju Maly, Ivan V |
description | T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. |
doi_str_mv | 10.1371/journal.pcbi.1000260 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312446453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A195135914</galeid><doaj_id>oai_doaj_org_article_88d03e8813af4722872ff210f0ec3489</doaj_id><sourcerecordid>A195135914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631t-f0540895b9f9772f02da261c9af4e83aa336ec544cc2f0c5a3c55164febab61b3</originalsourceid><addsrcrecordid>eNqVkkuLFDEUhQtRnHH0H4gGBMFFt0mlnhthGF8Ng4KO63ArdVOdMZW0Scpx3PrHTdmlToMbySIh-c654dybZQ8ZXTNes-eXbvIWzHonO71mlNK8oreyY1aWfFXzsrl943yU3QvhktJ0bKu72RFrGc9p3RxnP15iRD9qq0PUkowot2C1BENG16MhTpGL1WdtDHoi0Riycwa8_g5RO0s87rzrJ4mBxC2SK7A9em2HWQZ6JB3GK0RLgh4nE8Gim4K5JmgHGLAnEfyAMdzP7igwAR8s-0n26fWri7O3q_P3bzZnp-crWXEWV4qWBW3asmtVW9e5onkPecVkC6rAhgNwXqEsi0LK9ChL4LIsWVUo7KCrWMdPssd7351xQSz5BcE4y4uiKkqeiM2e6B1cip3XI_hr4UCLXxfODwJ8ysmgaJqecmwaxlP5Os-b9COVM6ooSl40bfJ6sVSbuhF7iTZ6MAemhy9Wb8XgvorUR07ZbPB0MfDuy4QhilGHuQf7HEVV1W1b0TyBT_bgAOlj2iqX_OQMi1PWloyXLSsStf4HlVaPo5bOotLp_kDw7ECQmIjf4gBTCGLz8cN_sO8O2WLPSu9C8Kj-ZMKomEf7d2vEPNpiGe0ke3Qzz7-iZZb5T3ec96A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66799602</pqid></control><display><type>article</type><title>Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Mun Ju ; Maly, Ivan V</creator><contributor>Papin, Jason A.</contributor><creatorcontrib>Kim, Mun Ju ; Maly, Ivan V ; Papin, Jason A.</creatorcontrib><description>T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1000260</identifier><identifier>PMID: 19132078</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Behavior ; Biomechanics ; Biophysics/Theory and Simulation ; Cell Biology/Cytoskeleton ; Cell Biology/Morphogenesis and Cell Biology ; Cell Compartmentation - immunology ; Cell Polarity - immunology ; Centrosome - immunology ; Centrosome - metabolism ; Computational Biology ; Cytoplasm ; Cytoplasmic Streaming - immunology ; Experiments ; Humans ; Immune response ; Immunology ; Intercellular Junctions - immunology ; Lymphocyte Activation - physiology ; Lymphocytes ; Microtubules ; Microtubules - immunology ; Models, Biological ; Molecular Motor Proteins - immunology ; Natural Killer T-Cells - immunology ; Natural Killer T-Cells - metabolism ; Physiological aspects ; Proteins ; T cells</subject><ispartof>PLoS computational biology, 2009-01, Vol.5 (1), p.e1000260-e1000260</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Kim, Maly. 2009</rights><rights>2009 Kim, Maly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kim M, Maly IV (2009) Deterministic Mechanical Model of T-Killer Cell Polarization Reproduces the Wandering of Aim between Simultaneously Engaged Targets. PLoS Comput Biol 5(1): e1000260. doi:10.1371/journal.pcbi.1000260</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c631t-f0540895b9f9772f02da261c9af4e83aa336ec544cc2f0c5a3c55164febab61b3</citedby><cites>FETCH-LOGICAL-c631t-f0540895b9f9772f02da261c9af4e83aa336ec544cc2f0c5a3c55164febab61b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603019/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603019/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19132078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Papin, Jason A.</contributor><creatorcontrib>Kim, Mun Ju</creatorcontrib><creatorcontrib>Maly, Ivan V</creatorcontrib><title>Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation.</description><subject>Animals</subject><subject>Behavior</subject><subject>Biomechanics</subject><subject>Biophysics/Theory and Simulation</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Cell Biology/Morphogenesis and Cell Biology</subject><subject>Cell Compartmentation - immunology</subject><subject>Cell Polarity - immunology</subject><subject>Centrosome - immunology</subject><subject>Centrosome - metabolism</subject><subject>Computational Biology</subject><subject>Cytoplasm</subject><subject>Cytoplasmic Streaming - immunology</subject><subject>Experiments</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunology</subject><subject>Intercellular Junctions - immunology</subject><subject>Lymphocyte Activation - physiology</subject><subject>Lymphocytes</subject><subject>Microtubules</subject><subject>Microtubules - immunology</subject><subject>Models, Biological</subject><subject>Molecular Motor Proteins - immunology</subject><subject>Natural Killer T-Cells - immunology</subject><subject>Natural Killer T-Cells - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>T cells</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuLFDEUhQtRnHH0H4gGBMFFt0mlnhthGF8Ng4KO63ArdVOdMZW0Scpx3PrHTdmlToMbySIh-c654dybZQ8ZXTNes-eXbvIWzHonO71mlNK8oreyY1aWfFXzsrl943yU3QvhktJ0bKu72RFrGc9p3RxnP15iRD9qq0PUkowot2C1BENG16MhTpGL1WdtDHoi0Riycwa8_g5RO0s87rzrJ4mBxC2SK7A9em2HWQZ6JB3GK0RLgh4nE8Gim4K5JmgHGLAnEfyAMdzP7igwAR8s-0n26fWri7O3q_P3bzZnp-crWXEWV4qWBW3asmtVW9e5onkPecVkC6rAhgNwXqEsi0LK9ChL4LIsWVUo7KCrWMdPssd7351xQSz5BcE4y4uiKkqeiM2e6B1cip3XI_hr4UCLXxfODwJ8ysmgaJqecmwaxlP5Os-b9COVM6ooSl40bfJ6sVSbuhF7iTZ6MAemhy9Wb8XgvorUR07ZbPB0MfDuy4QhilGHuQf7HEVV1W1b0TyBT_bgAOlj2iqX_OQMi1PWloyXLSsStf4HlVaPo5bOotLp_kDw7ECQmIjf4gBTCGLz8cN_sO8O2WLPSu9C8Kj-ZMKomEf7d2vEPNpiGe0ke3Qzz7-iZZb5T3ec96A</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kim, Mun Ju</creator><creator>Maly, Ivan V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090101</creationdate><title>Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets</title><author>Kim, Mun Ju ; Maly, Ivan V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631t-f0540895b9f9772f02da261c9af4e83aa336ec544cc2f0c5a3c55164febab61b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Behavior</topic><topic>Biomechanics</topic><topic>Biophysics/Theory and Simulation</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Cell Biology/Morphogenesis and Cell Biology</topic><topic>Cell Compartmentation - immunology</topic><topic>Cell Polarity - immunology</topic><topic>Centrosome - immunology</topic><topic>Centrosome - metabolism</topic><topic>Computational Biology</topic><topic>Cytoplasm</topic><topic>Cytoplasmic Streaming - immunology</topic><topic>Experiments</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunology</topic><topic>Intercellular Junctions - immunology</topic><topic>Lymphocyte Activation - physiology</topic><topic>Lymphocytes</topic><topic>Microtubules</topic><topic>Microtubules - immunology</topic><topic>Models, Biological</topic><topic>Molecular Motor Proteins - immunology</topic><topic>Natural Killer T-Cells - immunology</topic><topic>Natural Killer T-Cells - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>T cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mun Ju</creatorcontrib><creatorcontrib>Maly, Ivan V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mun Ju</au><au>Maly, Ivan V</au><au>Papin, Jason A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>5</volume><issue>1</issue><spage>e1000260</spage><epage>e1000260</epage><pages>e1000260-e1000260</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19132078</pmid><doi>10.1371/journal.pcbi.1000260</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2009-01, Vol.5 (1), p.e1000260-e1000260 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1312446453 |
source | PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Behavior Biomechanics Biophysics/Theory and Simulation Cell Biology/Cytoskeleton Cell Biology/Morphogenesis and Cell Biology Cell Compartmentation - immunology Cell Polarity - immunology Centrosome - immunology Centrosome - metabolism Computational Biology Cytoplasm Cytoplasmic Streaming - immunology Experiments Humans Immune response Immunology Intercellular Junctions - immunology Lymphocyte Activation - physiology Lymphocytes Microtubules Microtubules - immunology Models, Biological Molecular Motor Proteins - immunology Natural Killer T-Cells - immunology Natural Killer T-Cells - metabolism Physiological aspects Proteins T cells |
title | Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20mechanical%20model%20of%20T-killer%20cell%20polarization%20reproduces%20the%20wandering%20of%20aim%20between%20simultaneously%20engaged%20targets&rft.jtitle=PLoS%20computational%20biology&rft.au=Kim,%20Mun%20Ju&rft.date=2009-01-01&rft.volume=5&rft.issue=1&rft.spage=e1000260&rft.epage=e1000260&rft.pages=e1000260-e1000260&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1000260&rft_dat=%3Cgale_plos_%3EA195135914%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66799602&rft_id=info:pmid/19132078&rft_galeid=A195135914&rft_doaj_id=oai_doaj_org_article_88d03e8813af4722872ff210f0ec3489&rfr_iscdi=true |