microRNA target predictions across seven Drosophila species and comparison to mammalian targets
microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in D...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2005-06, Vol.1 (1), p.e13-e13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e13 |
---|---|
container_issue | 1 |
container_start_page | e13 |
container_title | PLoS computational biology |
container_volume | 1 |
creator | Grün, Dominic Wang, Yi-Lu Langenberger, David Gunsalus, Kristin C Rajewsky, Nikolaus |
description | microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in Drosophila melanogaster. Analysis of the functional annotation of target genes furthermore suggests specific biological functions for many microRNAs. We also predict combinatorial targets for clustered microRNAs and find that some clustered microRNAs are likely to coordinately regulate target genes. Furthermore, we compare microRNA regulation between insects and vertebrates. We find that the widespread extent of gene regulation by microRNAs is comparable between flies and mammals but that certain microRNAs may function in clade-specific modes of gene regulation. One of these microRNAs (miR-210) is predicted to contribute to the regulation of fly oogenesis. We also list specific regulatory relationships that appear to be conserved between flies and mammals. Our findings provide the most extensive microRNA target predictions in Drosophila to date, suggest specific functional roles for most microRNAs, indicate the existence of coordinate gene regulation executed by clustered microRNAs, and shed light on the evolution of microRNA function across large evolutionary distances. All predictions are freely accessible at our searchable Web site http://pictar.bio.nyu.edu. |
doi_str_mv | 10.1371/journal.pcbi.0010013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1312436712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62d24383733a472ab55c38e6b9b229dd</doaj_id><sourcerecordid>17559614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-d28df93ef5c90c8139e5b49f38a8876a7ec621367e5a83455c9b9a0aa5db1c853</originalsourceid><addsrcrecordid>eNqFUmFrFDEQXUSxtfoPRANCv92Z2Wx2ky9CqVULRUEU_BZmk9lrjt3NmuwV_Pfmemu1IgiBDDPvvUlmXlE8B74G0cDrbdjFEfv1ZFu_5hzyEQ-KY5BSrBoh1cO7uPp2VDxJact5Tuv6cXEENXCheXlcmMHbGD5_PGMzxg3NbIrkvJ19GBPDXEqJJbqhkb3NcZiufY8sTWQ95fromA3DhNGnMLI5sAGHAXuP4yKXnhaPOuwTPVvuk-Lru4sv5x9WV5_eX56fXa2slDCvXKlcpwV10mpuFQhNsq10JxQq1dTYkK1LEHVDEpWoZIa1GjmidC1YJcVJ8fKgO_UhmWU2yYCAsso0KDPi8oBwAbdmin7A-MME9OY2EeLGYJy97cnUpcssJRohsGpKbHM_oahudVuW2rms9WbptmsHcpbGOWJ_T_R-ZfTXZhNuDIASEnQWOF0EYvi-ozTnPSRLfY8jhV0ytapy-6r6LxAaKXUNe-Crv4D_HkJ1QN1uNlJ392bgZm-rXyyzt5VZbJVpL_7872_S4iPxE6vFzBM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312436712</pqid></control><display><type>article</type><title>microRNA target predictions across seven Drosophila species and comparison to mammalian targets</title><source>PLoS</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Grün, Dominic ; Wang, Yi-Lu ; Langenberger, David ; Gunsalus, Kristin C ; Rajewsky, Nikolaus</creator><contributor>Eisen, Michael</contributor><creatorcontrib>Grün, Dominic ; Wang, Yi-Lu ; Langenberger, David ; Gunsalus, Kristin C ; Rajewsky, Nikolaus ; Eisen, Michael</creatorcontrib><description>microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in Drosophila melanogaster. Analysis of the functional annotation of target genes furthermore suggests specific biological functions for many microRNAs. We also predict combinatorial targets for clustered microRNAs and find that some clustered microRNAs are likely to coordinately regulate target genes. Furthermore, we compare microRNA regulation between insects and vertebrates. We find that the widespread extent of gene regulation by microRNAs is comparable between flies and mammals but that certain microRNAs may function in clade-specific modes of gene regulation. One of these microRNAs (miR-210) is predicted to contribute to the regulation of fly oogenesis. We also list specific regulatory relationships that appear to be conserved between flies and mammals. Our findings provide the most extensive microRNA target predictions in Drosophila to date, suggest specific functional roles for most microRNAs, indicate the existence of coordinate gene regulation executed by clustered microRNAs, and shed light on the evolution of microRNA function across large evolutionary distances. All predictions are freely accessible at our searchable Web site http://pictar.bio.nyu.edu.</description><identifier>ISSN: 1553-734X</identifier><identifier>ISSN: 1553-7358</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.0010013</identifier><identifier>PMID: 16103902</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bioinformatics - Computational Biology ; Development ; Drosophila ; Drosophila melanogaster ; Evolution ; Experiments ; Gene expression ; Genetics ; Genomes ; Methods ; Noise ; Ontology ; Proteins ; RNA polymerase ; Systems Biology ; Vertebrates</subject><ispartof>PLoS computational biology, 2005-06, Vol.1 (1), p.e13-e13</ispartof><rights>2005 Grün et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Grün D, Wang Y-L, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets. PLoS Comput Biol 1(1): e13. doi:10.1371/journal.pcbi.0010013</rights><rights>Copyright: © 2005 Grün et al. 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-d28df93ef5c90c8139e5b49f38a8876a7ec621367e5a83455c9b9a0aa5db1c853</citedby><cites>FETCH-LOGICAL-c551t-d28df93ef5c90c8139e5b49f38a8876a7ec621367e5a83455c9b9a0aa5db1c853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1183519/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1183519/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16103902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Eisen, Michael</contributor><creatorcontrib>Grün, Dominic</creatorcontrib><creatorcontrib>Wang, Yi-Lu</creatorcontrib><creatorcontrib>Langenberger, David</creatorcontrib><creatorcontrib>Gunsalus, Kristin C</creatorcontrib><creatorcontrib>Rajewsky, Nikolaus</creatorcontrib><title>microRNA target predictions across seven Drosophila species and comparison to mammalian targets</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in Drosophila melanogaster. Analysis of the functional annotation of target genes furthermore suggests specific biological functions for many microRNAs. We also predict combinatorial targets for clustered microRNAs and find that some clustered microRNAs are likely to coordinately regulate target genes. Furthermore, we compare microRNA regulation between insects and vertebrates. We find that the widespread extent of gene regulation by microRNAs is comparable between flies and mammals but that certain microRNAs may function in clade-specific modes of gene regulation. One of these microRNAs (miR-210) is predicted to contribute to the regulation of fly oogenesis. We also list specific regulatory relationships that appear to be conserved between flies and mammals. Our findings provide the most extensive microRNA target predictions in Drosophila to date, suggest specific functional roles for most microRNAs, indicate the existence of coordinate gene regulation executed by clustered microRNAs, and shed light on the evolution of microRNA function across large evolutionary distances. All predictions are freely accessible at our searchable Web site http://pictar.bio.nyu.edu.</description><subject>Bioinformatics - Computational Biology</subject><subject>Development</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Methods</subject><subject>Noise</subject><subject>Ontology</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Systems Biology</subject><subject>Vertebrates</subject><issn>1553-734X</issn><issn>1553-7358</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqFUmFrFDEQXUSxtfoPRANCv92Z2Wx2ky9CqVULRUEU_BZmk9lrjt3NmuwV_Pfmemu1IgiBDDPvvUlmXlE8B74G0cDrbdjFEfv1ZFu_5hzyEQ-KY5BSrBoh1cO7uPp2VDxJact5Tuv6cXEENXCheXlcmMHbGD5_PGMzxg3NbIrkvJ19GBPDXEqJJbqhkb3NcZiufY8sTWQ95fromA3DhNGnMLI5sAGHAXuP4yKXnhaPOuwTPVvuk-Lru4sv5x9WV5_eX56fXa2slDCvXKlcpwV10mpuFQhNsq10JxQq1dTYkK1LEHVDEpWoZIa1GjmidC1YJcVJ8fKgO_UhmWU2yYCAsso0KDPi8oBwAbdmin7A-MME9OY2EeLGYJy97cnUpcssJRohsGpKbHM_oahudVuW2rms9WbptmsHcpbGOWJ_T_R-ZfTXZhNuDIASEnQWOF0EYvi-ozTnPSRLfY8jhV0ytapy-6r6LxAaKXUNe-Crv4D_HkJ1QN1uNlJ392bgZm-rXyyzt5VZbJVpL_7872_S4iPxE6vFzBM</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Grün, Dominic</creator><creator>Wang, Yi-Lu</creator><creator>Langenberger, David</creator><creator>Gunsalus, Kristin C</creator><creator>Rajewsky, Nikolaus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7SS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20050601</creationdate><title>microRNA target predictions across seven Drosophila species and comparison to mammalian targets</title><author>Grün, Dominic ; Wang, Yi-Lu ; Langenberger, David ; Gunsalus, Kristin C ; Rajewsky, Nikolaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-d28df93ef5c90c8139e5b49f38a8876a7ec621367e5a83455c9b9a0aa5db1c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bioinformatics - Computational Biology</topic><topic>Development</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Methods</topic><topic>Noise</topic><topic>Ontology</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Systems Biology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grün, Dominic</creatorcontrib><creatorcontrib>Wang, Yi-Lu</creatorcontrib><creatorcontrib>Langenberger, David</creatorcontrib><creatorcontrib>Gunsalus, Kristin C</creatorcontrib><creatorcontrib>Rajewsky, Nikolaus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grün, Dominic</au><au>Wang, Yi-Lu</au><au>Langenberger, David</au><au>Gunsalus, Kristin C</au><au>Rajewsky, Nikolaus</au><au>Eisen, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>microRNA target predictions across seven Drosophila species and comparison to mammalian targets</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>1</volume><issue>1</issue><spage>e13</spage><epage>e13</epage><pages>e13-e13</pages><issn>1553-734X</issn><issn>1553-7358</issn><eissn>1553-7358</eissn><abstract>microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in Drosophila melanogaster. Analysis of the functional annotation of target genes furthermore suggests specific biological functions for many microRNAs. We also predict combinatorial targets for clustered microRNAs and find that some clustered microRNAs are likely to coordinately regulate target genes. Furthermore, we compare microRNA regulation between insects and vertebrates. We find that the widespread extent of gene regulation by microRNAs is comparable between flies and mammals but that certain microRNAs may function in clade-specific modes of gene regulation. One of these microRNAs (miR-210) is predicted to contribute to the regulation of fly oogenesis. We also list specific regulatory relationships that appear to be conserved between flies and mammals. Our findings provide the most extensive microRNA target predictions in Drosophila to date, suggest specific functional roles for most microRNAs, indicate the existence of coordinate gene regulation executed by clustered microRNAs, and shed light on the evolution of microRNA function across large evolutionary distances. All predictions are freely accessible at our searchable Web site http://pictar.bio.nyu.edu.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>16103902</pmid><doi>10.1371/journal.pcbi.0010013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-734X |
ispartof | PLoS computational biology, 2005-06, Vol.1 (1), p.e13-e13 |
issn | 1553-734X 1553-7358 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1312436712 |
source | PLoS; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Bioinformatics - Computational Biology Development Drosophila Drosophila melanogaster Evolution Experiments Gene expression Genetics Genomes Methods Noise Ontology Proteins RNA polymerase Systems Biology Vertebrates |
title | microRNA target predictions across seven Drosophila species and comparison to mammalian targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=microRNA%20target%20predictions%20across%20seven%20Drosophila%20species%20and%20comparison%20to%20mammalian%20targets&rft.jtitle=PLoS%20computational%20biology&rft.au=Gr%C3%BCn,%20Dominic&rft.date=2005-06-01&rft.volume=1&rft.issue=1&rft.spage=e13&rft.epage=e13&rft.pages=e13-e13&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.0010013&rft_dat=%3Cproquest_plos_%3E17559614%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312436712&rft_id=info:pmid/16103902&rft_doaj_id=oai_doaj_org_article_62d24383733a472ab55c38e6b9b229dd&rfr_iscdi=true |