Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo

Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2008-10, Vol.3 (10), p.e3517-e3517
Hauptverfasser: Andersson, Emma R, Prakash, Nilima, Cajanek, Lukas, Minina, Eleonora, Bryja, Vitezslav, Bryjova, Lenka, Yamaguchi, Terry P, Hall, Anita C, Wurst, Wolfgang, Arenas, Ernest
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3517
container_issue 10
container_start_page e3517
container_title PloS one
container_volume 3
creator Andersson, Emma R
Prakash, Nilima
Cajanek, Lukas
Minina, Eleonora
Bryja, Vitezslav
Bryjova, Lenka
Yamaguchi, Terry P
Hall, Anita C
Wurst, Wolfgang
Arenas, Ernest
description Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.
doi_str_mv 10.1371/journal.pone.0003517
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312311703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472571744</galeid><doaj_id>oai_doaj_org_article_d66c56b4e49c4b57aa0001a7a75387bc</doaj_id><sourcerecordid>A472571744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c766t-15db3a1b999cb0928cacf1745b62b35f6b6842f518ab1e24cdf01d52e5b409313</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QDwoIXHZOmSdobYVj8GFhY8PMyJOlpJ2vbdJN21H9vxladES-8ajh9ztuepz1J8pjgNaGCvLhxk-9Vux5cD2uMMWVE3EnOSUmzlGeY3j06nyUPQrjBmNGC8_vJGSlKRnOCz5Pmcz8yhTw0U6tGCGgP_ehVizpbaa9sjzrnh51roIdgA1J9hcYdoAr20LqhizRyNdqU6YZgVLlBdbYH31iDDLRtQDFhb_fuYXKvVm2AR8t1lXx8_erD5dv06vrN9nJzlRrB-ZgSVmmqiC7L0mhcZoVRpiYiZ5pnmrKaa17kWc1IoTSBLDdVjUnFMmA6xyUldJU8nXOH1gW5OAqSUJJRQgSmkdjOROXUjRy87ZT_Lp2y8mfB-UYqP1rTgqw4N4zrHPLS5JoJpaJnooQSUaTQJmalc1b4CsOkT9KW0pd4Ask44VhE_uXydpPuoDKz65O20zu93cnG7WXGeFHEAVfJxRLg3e0EYZSdDQfRqgc3BclLESmWR_DZX-C_XaxnqlFxXNvXLj41KlcVdNbEH6u2sb7JRcZE_AqH2OcnDZEZ4dvYqCkEuX3_7v_Z60-n7MURuwPVjrvg2mm0rg-nYD6DxrsQPNS_5REsD3vxa0552Au57EVse3Is_k_Tsgj0Bw4kCWM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312311703</pqid></control><display><type>article</type><title>Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Andersson, Emma R ; Prakash, Nilima ; Cajanek, Lukas ; Minina, Eleonora ; Bryja, Vitezslav ; Bryjova, Lenka ; Yamaguchi, Terry P ; Hall, Anita C ; Wurst, Wolfgang ; Arenas, Ernest</creator><contributor>Callaerts, Patrick</contributor><creatorcontrib>Andersson, Emma R ; Prakash, Nilima ; Cajanek, Lukas ; Minina, Eleonora ; Bryja, Vitezslav ; Bryjova, Lenka ; Yamaguchi, Terry P ; Hall, Anita C ; Wurst, Wolfgang ; Arenas, Ernest ; Callaerts, Patrick</creatorcontrib><description>Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0003517</identifier><identifier>PMID: 18953410</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Biochemistry ; Biology ; Biophysics ; Brain ; Caenorhabditis elegans ; Cell Biology/Cell Adhesion ; Cell Biology/Cytoskeleton ; Cell Biology/Neuronal and Glial Cell Biology ; Cell differentiation ; Cell Differentiation - genetics ; Cell division ; Cell Polarity - genetics ; Cell Polarity - physiology ; Cell Proliferation ; Defects ; Developmental Biology/Cell Differentiation ; Developmental Biology/Neurodevelopment ; Developmental Biology/Pattern Formation ; Differentiation ; Dopamine - metabolism ; Dopamine receptors ; Drosophila ; Elongation ; Embryo, Mammalian ; Embryos ; Environmental health ; Female ; Genes ; Guanosine triphosphatases ; Hedgehog protein ; Hybridization ; Insects ; Kinases ; Laboratories ; Mesencephalon ; Mesencephalon - embryology ; Mesencephalon - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Biological ; Morphogenesis ; Morphogenesis - genetics ; Neurobiology ; Neurogenesis - genetics ; Neurons ; Neurons - metabolism ; Neurons - physiology ; Neurosciences ; Nuclear receptors ; Nurr1 protein ; Polarity ; Pregnancy ; Progenitor cells ; rac1 GTP-Binding Protein - metabolism ; Rac1 protein ; Regulation ; Ventricle ; Wnt protein ; Wnt Proteins - genetics ; Wnt Proteins - metabolism ; Wnt Proteins - physiology ; Wnt-5a Protein ; Xenopus</subject><ispartof>PloS one, 2008-10, Vol.3 (10), p.e3517-e3517</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Andersson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Andersson et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c766t-15db3a1b999cb0928cacf1745b62b35f6b6842f518ab1e24cdf01d52e5b409313</citedby><cites>FETCH-LOGICAL-c766t-15db3a1b999cb0928cacf1745b62b35f6b6842f518ab1e24cdf01d52e5b409313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18953410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:119839398$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Callaerts, Patrick</contributor><creatorcontrib>Andersson, Emma R</creatorcontrib><creatorcontrib>Prakash, Nilima</creatorcontrib><creatorcontrib>Cajanek, Lukas</creatorcontrib><creatorcontrib>Minina, Eleonora</creatorcontrib><creatorcontrib>Bryja, Vitezslav</creatorcontrib><creatorcontrib>Bryjova, Lenka</creatorcontrib><creatorcontrib>Yamaguchi, Terry P</creatorcontrib><creatorcontrib>Hall, Anita C</creatorcontrib><creatorcontrib>Wurst, Wolfgang</creatorcontrib><creatorcontrib>Arenas, Ernest</creatorcontrib><title>Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Caenorhabditis elegans</subject><subject>Cell Biology/Cell Adhesion</subject><subject>Cell Biology/Cytoskeleton</subject><subject>Cell Biology/Neuronal and Glial Cell Biology</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell division</subject><subject>Cell Polarity - genetics</subject><subject>Cell Polarity - physiology</subject><subject>Cell Proliferation</subject><subject>Defects</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Neurodevelopment</subject><subject>Developmental Biology/Pattern Formation</subject><subject>Differentiation</subject><subject>Dopamine - metabolism</subject><subject>Dopamine receptors</subject><subject>Drosophila</subject><subject>Elongation</subject><subject>Embryo, Mammalian</subject><subject>Embryos</subject><subject>Environmental health</subject><subject>Female</subject><subject>Genes</subject><subject>Guanosine triphosphatases</subject><subject>Hedgehog protein</subject><subject>Hybridization</subject><subject>Insects</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Mesencephalon</subject><subject>Mesencephalon - embryology</subject><subject>Mesencephalon - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>Morphogenesis</subject><subject>Morphogenesis - genetics</subject><subject>Neurobiology</subject><subject>Neurogenesis - genetics</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Nuclear receptors</subject><subject>Nurr1 protein</subject><subject>Polarity</subject><subject>Pregnancy</subject><subject>Progenitor cells</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Rac1 protein</subject><subject>Regulation</subject><subject>Ventricle</subject><subject>Wnt protein</subject><subject>Wnt Proteins - genetics</subject><subject>Wnt Proteins - metabolism</subject><subject>Wnt Proteins - physiology</subject><subject>Wnt-5a Protein</subject><subject>Xenopus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QDwoIXHZOmSdobYVj8GFhY8PMyJOlpJ2vbdJN21H9vxladES-8ajh9ztuepz1J8pjgNaGCvLhxk-9Vux5cD2uMMWVE3EnOSUmzlGeY3j06nyUPQrjBmNGC8_vJGSlKRnOCz5Pmcz8yhTw0U6tGCGgP_ehVizpbaa9sjzrnh51roIdgA1J9hcYdoAr20LqhizRyNdqU6YZgVLlBdbYH31iDDLRtQDFhb_fuYXKvVm2AR8t1lXx8_erD5dv06vrN9nJzlRrB-ZgSVmmqiC7L0mhcZoVRpiYiZ5pnmrKaa17kWc1IoTSBLDdVjUnFMmA6xyUldJU8nXOH1gW5OAqSUJJRQgSmkdjOROXUjRy87ZT_Lp2y8mfB-UYqP1rTgqw4N4zrHPLS5JoJpaJnooQSUaTQJmalc1b4CsOkT9KW0pd4Ask44VhE_uXydpPuoDKz65O20zu93cnG7WXGeFHEAVfJxRLg3e0EYZSdDQfRqgc3BclLESmWR_DZX-C_XaxnqlFxXNvXLj41KlcVdNbEH6u2sb7JRcZE_AqH2OcnDZEZ4dvYqCkEuX3_7v_Z60-n7MURuwPVjrvg2mm0rg-nYD6DxrsQPNS_5REsD3vxa0552Au57EVse3Is_k_Tsgj0Bw4kCWM</recordid><startdate>20081027</startdate><enddate>20081027</enddate><creator>Andersson, Emma R</creator><creator>Prakash, Nilima</creator><creator>Cajanek, Lukas</creator><creator>Minina, Eleonora</creator><creator>Bryja, Vitezslav</creator><creator>Bryjova, Lenka</creator><creator>Yamaguchi, Terry P</creator><creator>Hall, Anita C</creator><creator>Wurst, Wolfgang</creator><creator>Arenas, Ernest</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20081027</creationdate><title>Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo</title><author>Andersson, Emma R ; Prakash, Nilima ; Cajanek, Lukas ; Minina, Eleonora ; Bryja, Vitezslav ; Bryjova, Lenka ; Yamaguchi, Terry P ; Hall, Anita C ; Wurst, Wolfgang ; Arenas, Ernest</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c766t-15db3a1b999cb0928cacf1745b62b35f6b6842f518ab1e24cdf01d52e5b409313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Caenorhabditis elegans</topic><topic>Cell Biology/Cell Adhesion</topic><topic>Cell Biology/Cytoskeleton</topic><topic>Cell Biology/Neuronal and Glial Cell Biology</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell division</topic><topic>Cell Polarity - genetics</topic><topic>Cell Polarity - physiology</topic><topic>Cell Proliferation</topic><topic>Defects</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Neurodevelopment</topic><topic>Developmental Biology/Pattern Formation</topic><topic>Differentiation</topic><topic>Dopamine - metabolism</topic><topic>Dopamine receptors</topic><topic>Drosophila</topic><topic>Elongation</topic><topic>Embryo, Mammalian</topic><topic>Embryos</topic><topic>Environmental health</topic><topic>Female</topic><topic>Genes</topic><topic>Guanosine triphosphatases</topic><topic>Hedgehog protein</topic><topic>Hybridization</topic><topic>Insects</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Mesencephalon</topic><topic>Mesencephalon - embryology</topic><topic>Mesencephalon - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>Morphogenesis</topic><topic>Morphogenesis - genetics</topic><topic>Neurobiology</topic><topic>Neurogenesis - genetics</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Nuclear receptors</topic><topic>Nurr1 protein</topic><topic>Polarity</topic><topic>Pregnancy</topic><topic>Progenitor cells</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Rac1 protein</topic><topic>Regulation</topic><topic>Ventricle</topic><topic>Wnt protein</topic><topic>Wnt Proteins - genetics</topic><topic>Wnt Proteins - metabolism</topic><topic>Wnt Proteins - physiology</topic><topic>Wnt-5a Protein</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersson, Emma R</creatorcontrib><creatorcontrib>Prakash, Nilima</creatorcontrib><creatorcontrib>Cajanek, Lukas</creatorcontrib><creatorcontrib>Minina, Eleonora</creatorcontrib><creatorcontrib>Bryja, Vitezslav</creatorcontrib><creatorcontrib>Bryjova, Lenka</creatorcontrib><creatorcontrib>Yamaguchi, Terry P</creatorcontrib><creatorcontrib>Hall, Anita C</creatorcontrib><creatorcontrib>Wurst, Wolfgang</creatorcontrib><creatorcontrib>Arenas, Ernest</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersson, Emma R</au><au>Prakash, Nilima</au><au>Cajanek, Lukas</au><au>Minina, Eleonora</au><au>Bryja, Vitezslav</au><au>Bryjova, Lenka</au><au>Yamaguchi, Terry P</au><au>Hall, Anita C</au><au>Wurst, Wolfgang</au><au>Arenas, Ernest</au><au>Callaerts, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-10-27</date><risdate>2008</risdate><volume>3</volume><issue>10</issue><spage>e3517</spage><epage>e3517</epage><pages>e3517-e3517</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9-10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5-E13.5. Analysis of Wnt5a-/- mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a-/- mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18953410</pmid><doi>10.1371/journal.pone.0003517</doi><tpages>e3517</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2008-10, Vol.3 (10), p.e3517-e3517
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312311703
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Biochemistry
Biology
Biophysics
Brain
Caenorhabditis elegans
Cell Biology/Cell Adhesion
Cell Biology/Cytoskeleton
Cell Biology/Neuronal and Glial Cell Biology
Cell differentiation
Cell Differentiation - genetics
Cell division
Cell Polarity - genetics
Cell Polarity - physiology
Cell Proliferation
Defects
Developmental Biology/Cell Differentiation
Developmental Biology/Neurodevelopment
Developmental Biology/Pattern Formation
Differentiation
Dopamine - metabolism
Dopamine receptors
Drosophila
Elongation
Embryo, Mammalian
Embryos
Environmental health
Female
Genes
Guanosine triphosphatases
Hedgehog protein
Hybridization
Insects
Kinases
Laboratories
Mesencephalon
Mesencephalon - embryology
Mesencephalon - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Biological
Morphogenesis
Morphogenesis - genetics
Neurobiology
Neurogenesis - genetics
Neurons
Neurons - metabolism
Neurons - physiology
Neurosciences
Nuclear receptors
Nurr1 protein
Polarity
Pregnancy
Progenitor cells
rac1 GTP-Binding Protein - metabolism
Rac1 protein
Regulation
Ventricle
Wnt protein
Wnt Proteins - genetics
Wnt Proteins - metabolism
Wnt Proteins - physiology
Wnt-5a Protein
Xenopus
title Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wnt5a%20regulates%20ventral%20midbrain%20morphogenesis%20and%20the%20development%20of%20A9-A10%20dopaminergic%20cells%20in%20vivo&rft.jtitle=PloS%20one&rft.au=Andersson,%20Emma%20R&rft.date=2008-10-27&rft.volume=3&rft.issue=10&rft.spage=e3517&rft.epage=e3517&rft.pages=e3517-e3517&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0003517&rft_dat=%3Cgale_plos_%3EA472571744%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312311703&rft_id=info:pmid/18953410&rft_galeid=A472571744&rft_doaj_id=oai_doaj_org_article_d66c56b4e49c4b57aa0001a7a75387bc&rfr_iscdi=true