A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis

Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate developme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2008-10, Vol.3 (10), p.e3364-e3364
Hauptverfasser: Imamura, Shintaro, Uchiyama, Junzo, Koshimizu, Eriko, Hanai, Jun-Ichi, Raftopoulou, Christina, Murphey, Ryan D, Bayliss, Peter E, Imai, Yoichi, Burns, Caroline Erter, Masutomi, Kenkichi, Gagos, Sarantis, Zon, Leonard I, Roberts, Thomas M, Kishi, Shuji
Format: Artikel
Sprache:eng
Schlagworte:
DNA
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e3364
container_issue 10
container_start_page e3364
container_title PloS one
container_volume 3
creator Imamura, Shintaro
Uchiyama, Junzo
Koshimizu, Eriko
Hanai, Jun-Ichi
Raftopoulou, Christina
Murphey, Ryan D
Bayliss, Peter E
Imai, Yoichi
Burns, Caroline Erter
Masutomi, Kenkichi
Gagos, Sarantis
Zon, Leonard I
Roberts, Thomas M
Kishi, Shuji
description Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).
doi_str_mv 10.1371/journal.pone.0003364
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312309963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472611365</galeid><doaj_id>oai_doaj_org_article_598a1d2975284ac7a54c4410cf45e9ec</doaj_id><sourcerecordid>A472611365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7rr6DUQLwoIPM-bSpM2LMCxeBhYWvL2GM-npTIa0mU3SRf30ZpyqM-KDFJpw8jv_c-FfFE8pmVNe01dbP4YB3HznB5wTQjiX1b3inCrOZpIRfv_oflY8inFLiOCNlA-LM9o0lWSMnxdhUQ5-mBnIf2vAld04mGT9UPqu_I6rAJ2NmzKh8z0GiFgGvMOQzxRgiCbYXdpHbcwPt6MN2JadD2WbKed3PQ4pi26wh-R33mK08XHxoAMX8cl0XhSf3775dPV-dn3zbnm1uJ6ZmjVpRrkQrSC1pMjESimC2DK-WgEy0yFrKsVAAeG0qlVlCDDSYWtEXRtDu7pp-UXx_KC7cz7qaV1RU04ZJ0pJnonlgWg9bPUu2B7CN-3B6p8BH9YaQrLGoRaqAdoyVYtcGUwNojJVRYnpKoEKTdZ6PVUbV31uJA8ewJ2Inr4MdqPX_k4zISmRJAtcTgLB344Yk-5tNOgcDOjHqKWSoiZq3_WLv8B_zzY_UGvI7duh87mqyV-LvTXZM53N8UVVM0kplyInvDxJyEzCr2kNY4x6-fHD_7M3X07ZyyN2g-DSJno37k0WT8HqAJrgYwzY_V4eJXpv-V9z6r3l9WT5nPbsePF_kiaP8x8HW_8M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312309963</pqid></control><display><type>article</type><title>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Imamura, Shintaro ; Uchiyama, Junzo ; Koshimizu, Eriko ; Hanai, Jun-Ichi ; Raftopoulou, Christina ; Murphey, Ryan D ; Bayliss, Peter E ; Imai, Yoichi ; Burns, Caroline Erter ; Masutomi, Kenkichi ; Gagos, Sarantis ; Zon, Leonard I ; Roberts, Thomas M ; Kishi, Shuji</creator><contributor>Lopez-Schier, Hernan</contributor><creatorcontrib>Imamura, Shintaro ; Uchiyama, Junzo ; Koshimizu, Eriko ; Hanai, Jun-Ichi ; Raftopoulou, Christina ; Murphey, Ryan D ; Bayliss, Peter E ; Imai, Yoichi ; Burns, Caroline Erter ; Masutomi, Kenkichi ; Gagos, Sarantis ; Zon, Leonard I ; Roberts, Thomas M ; Kishi, Shuji ; Lopez-Schier, Hernan</creatorcontrib><description>Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0003364</identifier><identifier>PMID: 18846223</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Anemia ; Animals ; Apoptosis ; Apoptosis - physiology ; Bcl-2 protein ; Biology ; Biomarkers ; Biomedical research ; Blood ; Blood cells ; Cancer ; Catalysis ; Catalytic activity ; Cell cycle ; Cell differentiation ; Cell Differentiation - physiology ; Cell survival ; Cell Survival - physiology ; Cells (biology) ; Children &amp; youth ; Chromosomes ; Cloning ; Danio rerio ; Defects ; Deoxyribonucleic acid ; Developmental Biology/Aging ; Developmental Biology/Cell Differentiation ; Developmental Biology/Stem Cells ; Differentiation (biology) ; DNA ; Embryo, Nonmammalian - anatomy &amp; histology ; Embryo, Nonmammalian - physiology ; Embryos ; Gene expression ; Genes ; Hematology ; Hematology/Anemias ; Hematology/Disorders of Red Cell Metabolism ; Hematology/Hematopoiesis ; Hematology/Pediatric Hematology ; Hematopoiesis ; Hematopoiesis - physiology ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Homeostasis ; Humans ; Identification ; In Situ Hybridization ; Laboratories ; Medical schools ; Oligonucleotides, Antisense - genetics ; Oligonucleotides, Antisense - metabolism ; Oncology ; p53 Protein ; Pancytopenia ; Physiological aspects ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Regulators ; Ribonucleic acid ; RNA ; RNA-directed DNA polymerase ; Senescence ; Stem cells ; Telomerase ; Telomerase - genetics ; Telomerase - metabolism ; Telomerase reverse transcriptase ; Telomere - metabolism ; Telomere - ultrastructure ; Telomeres ; Tumor proteins ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Vertebrates ; Zebrafish ; Zebrafish - anatomy &amp; histology ; Zebrafish - embryology ; Zebrafish - physiology</subject><ispartof>PloS one, 2008-10, Vol.3 (10), p.e3364-e3364</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Imamura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Imamura et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</citedby><cites>FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561060/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561060/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18846223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lopez-Schier, Hernan</contributor><creatorcontrib>Imamura, Shintaro</creatorcontrib><creatorcontrib>Uchiyama, Junzo</creatorcontrib><creatorcontrib>Koshimizu, Eriko</creatorcontrib><creatorcontrib>Hanai, Jun-Ichi</creatorcontrib><creatorcontrib>Raftopoulou, Christina</creatorcontrib><creatorcontrib>Murphey, Ryan D</creatorcontrib><creatorcontrib>Bayliss, Peter E</creatorcontrib><creatorcontrib>Imai, Yoichi</creatorcontrib><creatorcontrib>Burns, Caroline Erter</creatorcontrib><creatorcontrib>Masutomi, Kenkichi</creatorcontrib><creatorcontrib>Gagos, Sarantis</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Roberts, Thomas M</creatorcontrib><creatorcontrib>Kishi, Shuji</creatorcontrib><title>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).</description><subject>Aberration</subject><subject>Anemia</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Bcl-2 protein</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biomedical research</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Cancer</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cell survival</subject><subject>Cell Survival - physiology</subject><subject>Cells (biology)</subject><subject>Children &amp; youth</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Danio rerio</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology/Aging</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Stem Cells</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>Embryo, Nonmammalian - anatomy &amp; histology</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryos</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hematology</subject><subject>Hematology/Anemias</subject><subject>Hematology/Disorders of Red Cell Metabolism</subject><subject>Hematology/Hematopoiesis</subject><subject>Hematology/Pediatric Hematology</subject><subject>Hematopoiesis</subject><subject>Hematopoiesis - physiology</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Identification</subject><subject>In Situ Hybridization</subject><subject>Laboratories</subject><subject>Medical schools</subject><subject>Oligonucleotides, Antisense - genetics</subject><subject>Oligonucleotides, Antisense - metabolism</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Pancytopenia</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Regulators</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-directed DNA polymerase</subject><subject>Senescence</subject><subject>Stem cells</subject><subject>Telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>Telomere - metabolism</subject><subject>Telomere - ultrastructure</subject><subject>Telomeres</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><subject>Zebrafish - anatomy &amp; histology</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7rr6DUQLwoIPM-bSpM2LMCxeBhYWvL2GM-npTIa0mU3SRf30ZpyqM-KDFJpw8jv_c-FfFE8pmVNe01dbP4YB3HznB5wTQjiX1b3inCrOZpIRfv_oflY8inFLiOCNlA-LM9o0lWSMnxdhUQ5-mBnIf2vAld04mGT9UPqu_I6rAJ2NmzKh8z0GiFgGvMOQzxRgiCbYXdpHbcwPt6MN2JadD2WbKed3PQ4pi26wh-R33mK08XHxoAMX8cl0XhSf3775dPV-dn3zbnm1uJ6ZmjVpRrkQrSC1pMjESimC2DK-WgEy0yFrKsVAAeG0qlVlCDDSYWtEXRtDu7pp-UXx_KC7cz7qaV1RU04ZJ0pJnonlgWg9bPUu2B7CN-3B6p8BH9YaQrLGoRaqAdoyVYtcGUwNojJVRYnpKoEKTdZ6PVUbV31uJA8ewJ2Inr4MdqPX_k4zISmRJAtcTgLB344Yk-5tNOgcDOjHqKWSoiZq3_WLv8B_zzY_UGvI7duh87mqyV-LvTXZM53N8UVVM0kplyInvDxJyEzCr2kNY4x6-fHD_7M3X07ZyyN2g-DSJno37k0WT8HqAJrgYwzY_V4eJXpv-V9z6r3l9WT5nPbsePF_kiaP8x8HW_8M</recordid><startdate>20081010</startdate><enddate>20081010</enddate><creator>Imamura, Shintaro</creator><creator>Uchiyama, Junzo</creator><creator>Koshimizu, Eriko</creator><creator>Hanai, Jun-Ichi</creator><creator>Raftopoulou, Christina</creator><creator>Murphey, Ryan D</creator><creator>Bayliss, Peter E</creator><creator>Imai, Yoichi</creator><creator>Burns, Caroline Erter</creator><creator>Masutomi, Kenkichi</creator><creator>Gagos, Sarantis</creator><creator>Zon, Leonard I</creator><creator>Roberts, Thomas M</creator><creator>Kishi, Shuji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081010</creationdate><title>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</title><author>Imamura, Shintaro ; Uchiyama, Junzo ; Koshimizu, Eriko ; Hanai, Jun-Ichi ; Raftopoulou, Christina ; Murphey, Ryan D ; Bayliss, Peter E ; Imai, Yoichi ; Burns, Caroline Erter ; Masutomi, Kenkichi ; Gagos, Sarantis ; Zon, Leonard I ; Roberts, Thomas M ; Kishi, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aberration</topic><topic>Anemia</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Bcl-2 protein</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biomedical research</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Cancer</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cell survival</topic><topic>Cell Survival - physiology</topic><topic>Cells (biology)</topic><topic>Children &amp; youth</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Danio rerio</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology/Aging</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Stem Cells</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>Embryo, Nonmammalian - anatomy &amp; histology</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryos</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hematology</topic><topic>Hematology/Anemias</topic><topic>Hematology/Disorders of Red Cell Metabolism</topic><topic>Hematology/Hematopoiesis</topic><topic>Hematology/Pediatric Hematology</topic><topic>Hematopoiesis</topic><topic>Hematopoiesis - physiology</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Identification</topic><topic>In Situ Hybridization</topic><topic>Laboratories</topic><topic>Medical schools</topic><topic>Oligonucleotides, Antisense - genetics</topic><topic>Oligonucleotides, Antisense - metabolism</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Pancytopenia</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Regulators</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-directed DNA polymerase</topic><topic>Senescence</topic><topic>Stem cells</topic><topic>Telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>Telomere - metabolism</topic><topic>Telomere - ultrastructure</topic><topic>Telomeres</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><topic>Zebrafish - anatomy &amp; histology</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamura, Shintaro</creatorcontrib><creatorcontrib>Uchiyama, Junzo</creatorcontrib><creatorcontrib>Koshimizu, Eriko</creatorcontrib><creatorcontrib>Hanai, Jun-Ichi</creatorcontrib><creatorcontrib>Raftopoulou, Christina</creatorcontrib><creatorcontrib>Murphey, Ryan D</creatorcontrib><creatorcontrib>Bayliss, Peter E</creatorcontrib><creatorcontrib>Imai, Yoichi</creatorcontrib><creatorcontrib>Burns, Caroline Erter</creatorcontrib><creatorcontrib>Masutomi, Kenkichi</creatorcontrib><creatorcontrib>Gagos, Sarantis</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Roberts, Thomas M</creatorcontrib><creatorcontrib>Kishi, Shuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamura, Shintaro</au><au>Uchiyama, Junzo</au><au>Koshimizu, Eriko</au><au>Hanai, Jun-Ichi</au><au>Raftopoulou, Christina</au><au>Murphey, Ryan D</au><au>Bayliss, Peter E</au><au>Imai, Yoichi</au><au>Burns, Caroline Erter</au><au>Masutomi, Kenkichi</au><au>Gagos, Sarantis</au><au>Zon, Leonard I</au><au>Roberts, Thomas M</au><au>Kishi, Shuji</au><au>Lopez-Schier, Hernan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-10-10</date><risdate>2008</risdate><volume>3</volume><issue>10</issue><spage>e3364</spage><epage>e3364</epage><pages>e3364-e3364</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18846223</pmid><doi>10.1371/journal.pone.0003364</doi><tpages>e3364</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2008-10, Vol.3 (10), p.e3364-e3364
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312309963
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aberration
Anemia
Animals
Apoptosis
Apoptosis - physiology
Bcl-2 protein
Biology
Biomarkers
Biomedical research
Blood
Blood cells
Cancer
Catalysis
Catalytic activity
Cell cycle
Cell differentiation
Cell Differentiation - physiology
Cell survival
Cell Survival - physiology
Cells (biology)
Children & youth
Chromosomes
Cloning
Danio rerio
Defects
Deoxyribonucleic acid
Developmental Biology/Aging
Developmental Biology/Cell Differentiation
Developmental Biology/Stem Cells
Differentiation (biology)
DNA
Embryo, Nonmammalian - anatomy & histology
Embryo, Nonmammalian - physiology
Embryos
Gene expression
Genes
Hematology
Hematology/Anemias
Hematology/Disorders of Red Cell Metabolism
Hematology/Hematopoiesis
Hematology/Pediatric Hematology
Hematopoiesis
Hematopoiesis - physiology
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Homeostasis
Humans
Identification
In Situ Hybridization
Laboratories
Medical schools
Oligonucleotides, Antisense - genetics
Oligonucleotides, Antisense - metabolism
Oncology
p53 Protein
Pancytopenia
Physiological aspects
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Regulators
Ribonucleic acid
RNA
RNA-directed DNA polymerase
Senescence
Stem cells
Telomerase
Telomerase - genetics
Telomerase - metabolism
Telomerase reverse transcriptase
Telomere - metabolism
Telomere - ultrastructure
Telomeres
Tumor proteins
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Vertebrates
Zebrafish
Zebrafish - anatomy & histology
Zebrafish - embryology
Zebrafish - physiology
title A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-canonical%20function%20of%20zebrafish%20telomerase%20reverse%20transcriptase%20is%20required%20for%20developmental%20hematopoiesis&rft.jtitle=PloS%20one&rft.au=Imamura,%20Shintaro&rft.date=2008-10-10&rft.volume=3&rft.issue=10&rft.spage=e3364&rft.epage=e3364&rft.pages=e3364-e3364&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0003364&rft_dat=%3Cgale_plos_%3EA472611365%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312309963&rft_id=info:pmid/18846223&rft_galeid=A472611365&rft_doaj_id=oai_doaj_org_article_598a1d2975284ac7a54c4410cf45e9ec&rfr_iscdi=true