A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate developme...
Gespeichert in:
Veröffentlicht in: | PloS one 2008-10, Vol.3 (10), p.e3364-e3364 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e3364 |
---|---|
container_issue | 10 |
container_start_page | e3364 |
container_title | PloS one |
container_volume | 3 |
creator | Imamura, Shintaro Uchiyama, Junzo Koshimizu, Eriko Hanai, Jun-Ichi Raftopoulou, Christina Murphey, Ryan D Bayliss, Peter E Imai, Yoichi Burns, Caroline Erter Masutomi, Kenkichi Gagos, Sarantis Zon, Leonard I Roberts, Thomas M Kishi, Shuji |
description | Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words). |
doi_str_mv | 10.1371/journal.pone.0003364 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312309963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472611365</galeid><doaj_id>oai_doaj_org_article_598a1d2975284ac7a54c4410cf45e9ec</doaj_id><sourcerecordid>A472611365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7rr6DUQLwoIPM-bSpM2LMCxeBhYWvL2GM-npTIa0mU3SRf30ZpyqM-KDFJpw8jv_c-FfFE8pmVNe01dbP4YB3HznB5wTQjiX1b3inCrOZpIRfv_oflY8inFLiOCNlA-LM9o0lWSMnxdhUQ5-mBnIf2vAld04mGT9UPqu_I6rAJ2NmzKh8z0GiFgGvMOQzxRgiCbYXdpHbcwPt6MN2JadD2WbKed3PQ4pi26wh-R33mK08XHxoAMX8cl0XhSf3775dPV-dn3zbnm1uJ6ZmjVpRrkQrSC1pMjESimC2DK-WgEy0yFrKsVAAeG0qlVlCDDSYWtEXRtDu7pp-UXx_KC7cz7qaV1RU04ZJ0pJnonlgWg9bPUu2B7CN-3B6p8BH9YaQrLGoRaqAdoyVYtcGUwNojJVRYnpKoEKTdZ6PVUbV31uJA8ewJ2Inr4MdqPX_k4zISmRJAtcTgLB344Yk-5tNOgcDOjHqKWSoiZq3_WLv8B_zzY_UGvI7duh87mqyV-LvTXZM53N8UVVM0kplyInvDxJyEzCr2kNY4x6-fHD_7M3X07ZyyN2g-DSJno37k0WT8HqAJrgYwzY_V4eJXpv-V9z6r3l9WT5nPbsePF_kiaP8x8HW_8M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312309963</pqid></control><display><type>article</type><title>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Imamura, Shintaro ; Uchiyama, Junzo ; Koshimizu, Eriko ; Hanai, Jun-Ichi ; Raftopoulou, Christina ; Murphey, Ryan D ; Bayliss, Peter E ; Imai, Yoichi ; Burns, Caroline Erter ; Masutomi, Kenkichi ; Gagos, Sarantis ; Zon, Leonard I ; Roberts, Thomas M ; Kishi, Shuji</creator><contributor>Lopez-Schier, Hernan</contributor><creatorcontrib>Imamura, Shintaro ; Uchiyama, Junzo ; Koshimizu, Eriko ; Hanai, Jun-Ichi ; Raftopoulou, Christina ; Murphey, Ryan D ; Bayliss, Peter E ; Imai, Yoichi ; Burns, Caroline Erter ; Masutomi, Kenkichi ; Gagos, Sarantis ; Zon, Leonard I ; Roberts, Thomas M ; Kishi, Shuji ; Lopez-Schier, Hernan</creatorcontrib><description>Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0003364</identifier><identifier>PMID: 18846223</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Anemia ; Animals ; Apoptosis ; Apoptosis - physiology ; Bcl-2 protein ; Biology ; Biomarkers ; Biomedical research ; Blood ; Blood cells ; Cancer ; Catalysis ; Catalytic activity ; Cell cycle ; Cell differentiation ; Cell Differentiation - physiology ; Cell survival ; Cell Survival - physiology ; Cells (biology) ; Children & youth ; Chromosomes ; Cloning ; Danio rerio ; Defects ; Deoxyribonucleic acid ; Developmental Biology/Aging ; Developmental Biology/Cell Differentiation ; Developmental Biology/Stem Cells ; Differentiation (biology) ; DNA ; Embryo, Nonmammalian - anatomy & histology ; Embryo, Nonmammalian - physiology ; Embryos ; Gene expression ; Genes ; Hematology ; Hematology/Anemias ; Hematology/Disorders of Red Cell Metabolism ; Hematology/Hematopoiesis ; Hematology/Pediatric Hematology ; Hematopoiesis ; Hematopoiesis - physiology ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Homeostasis ; Humans ; Identification ; In Situ Hybridization ; Laboratories ; Medical schools ; Oligonucleotides, Antisense - genetics ; Oligonucleotides, Antisense - metabolism ; Oncology ; p53 Protein ; Pancytopenia ; Physiological aspects ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Regulators ; Ribonucleic acid ; RNA ; RNA-directed DNA polymerase ; Senescence ; Stem cells ; Telomerase ; Telomerase - genetics ; Telomerase - metabolism ; Telomerase reverse transcriptase ; Telomere - metabolism ; Telomere - ultrastructure ; Telomeres ; Tumor proteins ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Vertebrates ; Zebrafish ; Zebrafish - anatomy & histology ; Zebrafish - embryology ; Zebrafish - physiology</subject><ispartof>PloS one, 2008-10, Vol.3 (10), p.e3364-e3364</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Imamura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Imamura et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</citedby><cites>FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561060/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561060/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18846223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lopez-Schier, Hernan</contributor><creatorcontrib>Imamura, Shintaro</creatorcontrib><creatorcontrib>Uchiyama, Junzo</creatorcontrib><creatorcontrib>Koshimizu, Eriko</creatorcontrib><creatorcontrib>Hanai, Jun-Ichi</creatorcontrib><creatorcontrib>Raftopoulou, Christina</creatorcontrib><creatorcontrib>Murphey, Ryan D</creatorcontrib><creatorcontrib>Bayliss, Peter E</creatorcontrib><creatorcontrib>Imai, Yoichi</creatorcontrib><creatorcontrib>Burns, Caroline Erter</creatorcontrib><creatorcontrib>Masutomi, Kenkichi</creatorcontrib><creatorcontrib>Gagos, Sarantis</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Roberts, Thomas M</creatorcontrib><creatorcontrib>Kishi, Shuji</creatorcontrib><title>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).</description><subject>Aberration</subject><subject>Anemia</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Bcl-2 protein</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biomedical research</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Cancer</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - physiology</subject><subject>Cell survival</subject><subject>Cell Survival - physiology</subject><subject>Cells (biology)</subject><subject>Children & youth</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Danio rerio</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology/Aging</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Stem Cells</subject><subject>Differentiation (biology)</subject><subject>DNA</subject><subject>Embryo, Nonmammalian - anatomy & histology</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryos</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hematology</subject><subject>Hematology/Anemias</subject><subject>Hematology/Disorders of Red Cell Metabolism</subject><subject>Hematology/Hematopoiesis</subject><subject>Hematology/Pediatric Hematology</subject><subject>Hematopoiesis</subject><subject>Hematopoiesis - physiology</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Identification</subject><subject>In Situ Hybridization</subject><subject>Laboratories</subject><subject>Medical schools</subject><subject>Oligonucleotides, Antisense - genetics</subject><subject>Oligonucleotides, Antisense - metabolism</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Pancytopenia</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Regulators</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-directed DNA polymerase</subject><subject>Senescence</subject><subject>Stem cells</subject><subject>Telomerase</subject><subject>Telomerase - genetics</subject><subject>Telomerase - metabolism</subject><subject>Telomerase reverse transcriptase</subject><subject>Telomere - metabolism</subject><subject>Telomere - ultrastructure</subject><subject>Telomeres</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><subject>Zebrafish - anatomy & histology</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7rr6DUQLwoIPM-bSpM2LMCxeBhYWvL2GM-npTIa0mU3SRf30ZpyqM-KDFJpw8jv_c-FfFE8pmVNe01dbP4YB3HznB5wTQjiX1b3inCrOZpIRfv_oflY8inFLiOCNlA-LM9o0lWSMnxdhUQ5-mBnIf2vAld04mGT9UPqu_I6rAJ2NmzKh8z0GiFgGvMOQzxRgiCbYXdpHbcwPt6MN2JadD2WbKed3PQ4pi26wh-R33mK08XHxoAMX8cl0XhSf3775dPV-dn3zbnm1uJ6ZmjVpRrkQrSC1pMjESimC2DK-WgEy0yFrKsVAAeG0qlVlCDDSYWtEXRtDu7pp-UXx_KC7cz7qaV1RU04ZJ0pJnonlgWg9bPUu2B7CN-3B6p8BH9YaQrLGoRaqAdoyVYtcGUwNojJVRYnpKoEKTdZ6PVUbV31uJA8ewJ2Inr4MdqPX_k4zISmRJAtcTgLB344Yk-5tNOgcDOjHqKWSoiZq3_WLv8B_zzY_UGvI7duh87mqyV-LvTXZM53N8UVVM0kplyInvDxJyEzCr2kNY4x6-fHD_7M3X07ZyyN2g-DSJno37k0WT8HqAJrgYwzY_V4eJXpv-V9z6r3l9WT5nPbsePF_kiaP8x8HW_8M</recordid><startdate>20081010</startdate><enddate>20081010</enddate><creator>Imamura, Shintaro</creator><creator>Uchiyama, Junzo</creator><creator>Koshimizu, Eriko</creator><creator>Hanai, Jun-Ichi</creator><creator>Raftopoulou, Christina</creator><creator>Murphey, Ryan D</creator><creator>Bayliss, Peter E</creator><creator>Imai, Yoichi</creator><creator>Burns, Caroline Erter</creator><creator>Masutomi, Kenkichi</creator><creator>Gagos, Sarantis</creator><creator>Zon, Leonard I</creator><creator>Roberts, Thomas M</creator><creator>Kishi, Shuji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081010</creationdate><title>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</title><author>Imamura, Shintaro ; Uchiyama, Junzo ; Koshimizu, Eriko ; Hanai, Jun-Ichi ; Raftopoulou, Christina ; Murphey, Ryan D ; Bayliss, Peter E ; Imai, Yoichi ; Burns, Caroline Erter ; Masutomi, Kenkichi ; Gagos, Sarantis ; Zon, Leonard I ; Roberts, Thomas M ; Kishi, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-1355d50761e25b990eed23bbae2cfe28492a9a0314794c0a20fedc577cc1f78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aberration</topic><topic>Anemia</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Bcl-2 protein</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biomedical research</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Cancer</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - physiology</topic><topic>Cell survival</topic><topic>Cell Survival - physiology</topic><topic>Cells (biology)</topic><topic>Children & youth</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Danio rerio</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology/Aging</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Stem Cells</topic><topic>Differentiation (biology)</topic><topic>DNA</topic><topic>Embryo, Nonmammalian - anatomy & histology</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryos</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hematology</topic><topic>Hematology/Anemias</topic><topic>Hematology/Disorders of Red Cell Metabolism</topic><topic>Hematology/Hematopoiesis</topic><topic>Hematology/Pediatric Hematology</topic><topic>Hematopoiesis</topic><topic>Hematopoiesis - physiology</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Identification</topic><topic>In Situ Hybridization</topic><topic>Laboratories</topic><topic>Medical schools</topic><topic>Oligonucleotides, Antisense - genetics</topic><topic>Oligonucleotides, Antisense - metabolism</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Pancytopenia</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Regulators</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-directed DNA polymerase</topic><topic>Senescence</topic><topic>Stem cells</topic><topic>Telomerase</topic><topic>Telomerase - genetics</topic><topic>Telomerase - metabolism</topic><topic>Telomerase reverse transcriptase</topic><topic>Telomere - metabolism</topic><topic>Telomere - ultrastructure</topic><topic>Telomeres</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><topic>Zebrafish - anatomy & histology</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamura, Shintaro</creatorcontrib><creatorcontrib>Uchiyama, Junzo</creatorcontrib><creatorcontrib>Koshimizu, Eriko</creatorcontrib><creatorcontrib>Hanai, Jun-Ichi</creatorcontrib><creatorcontrib>Raftopoulou, Christina</creatorcontrib><creatorcontrib>Murphey, Ryan D</creatorcontrib><creatorcontrib>Bayliss, Peter E</creatorcontrib><creatorcontrib>Imai, Yoichi</creatorcontrib><creatorcontrib>Burns, Caroline Erter</creatorcontrib><creatorcontrib>Masutomi, Kenkichi</creatorcontrib><creatorcontrib>Gagos, Sarantis</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Roberts, Thomas M</creatorcontrib><creatorcontrib>Kishi, Shuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamura, Shintaro</au><au>Uchiyama, Junzo</au><au>Koshimizu, Eriko</au><au>Hanai, Jun-Ichi</au><au>Raftopoulou, Christina</au><au>Murphey, Ryan D</au><au>Bayliss, Peter E</au><au>Imai, Yoichi</au><au>Burns, Caroline Erter</au><au>Masutomi, Kenkichi</au><au>Gagos, Sarantis</au><au>Zon, Leonard I</au><au>Roberts, Thomas M</au><au>Kishi, Shuji</au><au>Lopez-Schier, Hernan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-10-10</date><risdate>2008</risdate><volume>3</volume><issue>10</issue><spage>e3364</spage><epage>e3364</epage><pages>e3364-e3364</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from "authentic" telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18846223</pmid><doi>10.1371/journal.pone.0003364</doi><tpages>e3364</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2008-10, Vol.3 (10), p.e3364-e3364 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1312309963 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aberration Anemia Animals Apoptosis Apoptosis - physiology Bcl-2 protein Biology Biomarkers Biomedical research Blood Blood cells Cancer Catalysis Catalytic activity Cell cycle Cell differentiation Cell Differentiation - physiology Cell survival Cell Survival - physiology Cells (biology) Children & youth Chromosomes Cloning Danio rerio Defects Deoxyribonucleic acid Developmental Biology/Aging Developmental Biology/Cell Differentiation Developmental Biology/Stem Cells Differentiation (biology) DNA Embryo, Nonmammalian - anatomy & histology Embryo, Nonmammalian - physiology Embryos Gene expression Genes Hematology Hematology/Anemias Hematology/Disorders of Red Cell Metabolism Hematology/Hematopoiesis Hematology/Pediatric Hematology Hematopoiesis Hematopoiesis - physiology Hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - metabolism Homeostasis Humans Identification In Situ Hybridization Laboratories Medical schools Oligonucleotides, Antisense - genetics Oligonucleotides, Antisense - metabolism Oncology p53 Protein Pancytopenia Physiological aspects Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Regulators Ribonucleic acid RNA RNA-directed DNA polymerase Senescence Stem cells Telomerase Telomerase - genetics Telomerase - metabolism Telomerase reverse transcriptase Telomere - metabolism Telomere - ultrastructure Telomeres Tumor proteins Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Vertebrates Zebrafish Zebrafish - anatomy & histology Zebrafish - embryology Zebrafish - physiology |
title | A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20non-canonical%20function%20of%20zebrafish%20telomerase%20reverse%20transcriptase%20is%20required%20for%20developmental%20hematopoiesis&rft.jtitle=PloS%20one&rft.au=Imamura,%20Shintaro&rft.date=2008-10-10&rft.volume=3&rft.issue=10&rft.spage=e3364&rft.epage=e3364&rft.pages=e3364-e3364&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0003364&rft_dat=%3Cgale_plos_%3EA472611365%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312309963&rft_id=info:pmid/18846223&rft_galeid=A472611365&rft_doaj_id=oai_doaj_org_article_598a1d2975284ac7a54c4410cf45e9ec&rfr_iscdi=true |