Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis

The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries--such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)-have led to an increasing focus on the biological controllability or eradicability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2008-08, Vol.3 (8), p.e2874
Hauptverfasser: Gambhir, Manoj, Michael, Edwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e2874
container_title PloS one
container_volume 3
creator Gambhir, Manoj
Michael, Edwin
description The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries--such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)-have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease. We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination. The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.
doi_str_mv 10.1371/journal.pone.0002874
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312297349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472636511</galeid><doaj_id>oai_doaj_org_article_73d801c71c8440ba9eeca0fabac95781</doaj_id><sourcerecordid>A472636511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-904e1cda5d3d183f9eafd9f9f2e65520aedc24972d80e0663960c087798235ea3</originalsourceid><addsrcrecordid>eNqNkmuL1DAUhoso7rr6D0QLgiA4Yy5t0nwRlsHLwMKCt6_hTHI6kyVtukln2fn3ZpyqMx8EaaHl5Dlv3py8RfGckjnlkr67CdvYg58Pocc5IYQ1snpQnFPF2Uwwwh8e_Z8VT1K6IaTmjRCPizPaSCqEFOdFvwjd4PG-RBN8WDsDvrS7HjpnUgm9LTGCzdWV827claEtxw2Wd2jGEMtViD2WHZgYBoiQ3OhMaV1CSPi29Ltu2MC-1DoP0eX19LR41IJP-Gz6XhTfP374tvg8u7r-tFxcXs2MZM04U6RCaizUllva8FYhtFa1qmUo6poRQGtYpSSzDUEiBFeCGNJIqRrGawR-Ubw86A4-JD2NKmnKKWNK8kplYnkgbIAbPUTXQdzpAE7_KoS41hCzeY9a8rwNNZKapqrIChSiAdLCCoyqZUOz1vtpt-2qy9awHyP4E9HTld5t9DrcaVbTJr9Z4NUkEMPtFtP4D8vzA7WG7Mr1bchiJj8W83XlGOQ5o76sJBNc1HTv681JQ2ZGvB_XsE1JL79--X_2-scp-_qI3SD4cZOC344u9OkUrA5gTkhKEds_M6FE71P8-5x6n2I9pTi3vTie59-mKbb8J3MR7_U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312297349</pqid></control><display><type>article</type><title>Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gambhir, Manoj ; Michael, Edwin</creator><contributor>Koelle, Katia</contributor><creatorcontrib>Gambhir, Manoj ; Michael, Edwin ; Koelle, Katia</creatorcontrib><description>The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries--such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)-have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease. We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination. The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0002874</identifier><identifier>PMID: 18716676</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acquired immune deficiency syndrome ; Age ; AIDS ; Analysis ; Animals ; Bites and Stings - parasitology ; Biting ; Command and control ; Command and control systems ; Controllability ; Culex quinquefasciatus ; Developing countries ; Disease control ; Disease transmission ; Diseases ; Ecology/Ecosystem Ecology ; Ecology/Population Ecology ; Elephantiasis, Filarial - drug therapy ; Elephantiasis, Filarial - epidemiology ; Elephantiasis, Filarial - prevention &amp; control ; Elephantiasis, Filarial - transmission ; Endangered &amp; extinct species ; Epidemiology ; Equilibrium analysis ; Eradication ; Extinction ; Filariasis ; Filaricides - therapeutic use ; Health aspects ; HIV ; Human immunodeficiency virus ; Humans ; Hysteresis ; Hysteresis loops ; Infections ; Infectious diseases ; Infectious Diseases/Epidemiology and Control of Infectious Diseases ; Infectious Diseases/Helminth Infections ; Initial conditions ; Larva - physiology ; LDCs ; Malaria ; Mathematical models ; Mathematics/Nonlinear Dynamics ; Medical research ; Medicine ; Microfilariae - growth &amp; development ; Microfilariae - physiology ; Morbidity ; Mortality ; Mosquitoes ; Nonlinear systems ; Parasites ; Parasitic diseases ; Parasitology ; Partial differential equations ; Population ; Prevalence ; Public Health and Epidemiology/Global Health ; Resilience ; Sensitivity and Specificity ; Species extinction ; Stability ; System dynamics ; Systems stability ; Thresholds ; Tropical diseases ; Tuberculosis ; Vector-borne diseases ; Wuchereria bancrofti</subject><ispartof>PloS one, 2008-08, Vol.3 (8), p.e2874</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Gambhir et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Gambhir et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-904e1cda5d3d183f9eafd9f9f2e65520aedc24972d80e0663960c087798235ea3</citedby><cites>FETCH-LOGICAL-c728t-904e1cda5d3d183f9eafd9f9f2e65520aedc24972d80e0663960c087798235ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18716676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Koelle, Katia</contributor><creatorcontrib>Gambhir, Manoj</creatorcontrib><creatorcontrib>Michael, Edwin</creatorcontrib><title>Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries--such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)-have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease. We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination. The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.</description><subject>Acquired immune deficiency syndrome</subject><subject>Age</subject><subject>AIDS</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bites and Stings - parasitology</subject><subject>Biting</subject><subject>Command and control</subject><subject>Command and control systems</subject><subject>Controllability</subject><subject>Culex quinquefasciatus</subject><subject>Developing countries</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Diseases</subject><subject>Ecology/Ecosystem Ecology</subject><subject>Ecology/Population Ecology</subject><subject>Elephantiasis, Filarial - drug therapy</subject><subject>Elephantiasis, Filarial - epidemiology</subject><subject>Elephantiasis, Filarial - prevention &amp; control</subject><subject>Elephantiasis, Filarial - transmission</subject><subject>Endangered &amp; extinct species</subject><subject>Epidemiology</subject><subject>Equilibrium analysis</subject><subject>Eradication</subject><subject>Extinction</subject><subject>Filariasis</subject><subject>Filaricides - therapeutic use</subject><subject>Health aspects</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Infectious Diseases/Epidemiology and Control of Infectious Diseases</subject><subject>Infectious Diseases/Helminth Infections</subject><subject>Initial conditions</subject><subject>Larva - physiology</subject><subject>LDCs</subject><subject>Malaria</subject><subject>Mathematical models</subject><subject>Mathematics/Nonlinear Dynamics</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Microfilariae - growth &amp; development</subject><subject>Microfilariae - physiology</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Mosquitoes</subject><subject>Nonlinear systems</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Parasitology</subject><subject>Partial differential equations</subject><subject>Population</subject><subject>Prevalence</subject><subject>Public Health and Epidemiology/Global Health</subject><subject>Resilience</subject><subject>Sensitivity and Specificity</subject><subject>Species extinction</subject><subject>Stability</subject><subject>System dynamics</subject><subject>Systems stability</subject><subject>Thresholds</subject><subject>Tropical diseases</subject><subject>Tuberculosis</subject><subject>Vector-borne diseases</subject><subject>Wuchereria bancrofti</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkmuL1DAUhoso7rr6D0QLgiA4Yy5t0nwRlsHLwMKCt6_hTHI6kyVtukln2fn3ZpyqMx8EaaHl5Dlv3py8RfGckjnlkr67CdvYg58Pocc5IYQ1snpQnFPF2Uwwwh8e_Z8VT1K6IaTmjRCPizPaSCqEFOdFvwjd4PG-RBN8WDsDvrS7HjpnUgm9LTGCzdWV827claEtxw2Wd2jGEMtViD2WHZgYBoiQ3OhMaV1CSPi29Ltu2MC-1DoP0eX19LR41IJP-Gz6XhTfP374tvg8u7r-tFxcXs2MZM04U6RCaizUllva8FYhtFa1qmUo6poRQGtYpSSzDUEiBFeCGNJIqRrGawR-Ubw86A4-JD2NKmnKKWNK8kplYnkgbIAbPUTXQdzpAE7_KoS41hCzeY9a8rwNNZKapqrIChSiAdLCCoyqZUOz1vtpt-2qy9awHyP4E9HTld5t9DrcaVbTJr9Z4NUkEMPtFtP4D8vzA7WG7Mr1bchiJj8W83XlGOQ5o76sJBNc1HTv681JQ2ZGvB_XsE1JL79--X_2-scp-_qI3SD4cZOC344u9OkUrA5gTkhKEds_M6FE71P8-5x6n2I9pTi3vTie59-mKbb8J3MR7_U</recordid><startdate>20080806</startdate><enddate>20080806</enddate><creator>Gambhir, Manoj</creator><creator>Michael, Edwin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080806</creationdate><title>Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis</title><author>Gambhir, Manoj ; Michael, Edwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-904e1cda5d3d183f9eafd9f9f2e65520aedc24972d80e0663960c087798235ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>Age</topic><topic>AIDS</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bites and Stings - parasitology</topic><topic>Biting</topic><topic>Command and control</topic><topic>Command and control systems</topic><topic>Controllability</topic><topic>Culex quinquefasciatus</topic><topic>Developing countries</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Diseases</topic><topic>Ecology/Ecosystem Ecology</topic><topic>Ecology/Population Ecology</topic><topic>Elephantiasis, Filarial - drug therapy</topic><topic>Elephantiasis, Filarial - epidemiology</topic><topic>Elephantiasis, Filarial - prevention &amp; control</topic><topic>Elephantiasis, Filarial - transmission</topic><topic>Endangered &amp; extinct species</topic><topic>Epidemiology</topic><topic>Equilibrium analysis</topic><topic>Eradication</topic><topic>Extinction</topic><topic>Filariasis</topic><topic>Filaricides - therapeutic use</topic><topic>Health aspects</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Infectious Diseases/Epidemiology and Control of Infectious Diseases</topic><topic>Infectious Diseases/Helminth Infections</topic><topic>Initial conditions</topic><topic>Larva - physiology</topic><topic>LDCs</topic><topic>Malaria</topic><topic>Mathematical models</topic><topic>Mathematics/Nonlinear Dynamics</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Microfilariae - growth &amp; development</topic><topic>Microfilariae - physiology</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Mosquitoes</topic><topic>Nonlinear systems</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Parasitology</topic><topic>Partial differential equations</topic><topic>Population</topic><topic>Prevalence</topic><topic>Public Health and Epidemiology/Global Health</topic><topic>Resilience</topic><topic>Sensitivity and Specificity</topic><topic>Species extinction</topic><topic>Stability</topic><topic>System dynamics</topic><topic>Systems stability</topic><topic>Thresholds</topic><topic>Tropical diseases</topic><topic>Tuberculosis</topic><topic>Vector-borne diseases</topic><topic>Wuchereria bancrofti</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gambhir, Manoj</creatorcontrib><creatorcontrib>Michael, Edwin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gambhir, Manoj</au><au>Michael, Edwin</au><au>Koelle, Katia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-08-06</date><risdate>2008</risdate><volume>3</volume><issue>8</issue><spage>e2874</spage><pages>e2874-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries--such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)-have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease. We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination. The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18716676</pmid><doi>10.1371/journal.pone.0002874</doi><tpages>e2874</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2008-08, Vol.3 (8), p.e2874
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312297349
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acquired immune deficiency syndrome
Age
AIDS
Analysis
Animals
Bites and Stings - parasitology
Biting
Command and control
Command and control systems
Controllability
Culex quinquefasciatus
Developing countries
Disease control
Disease transmission
Diseases
Ecology/Ecosystem Ecology
Ecology/Population Ecology
Elephantiasis, Filarial - drug therapy
Elephantiasis, Filarial - epidemiology
Elephantiasis, Filarial - prevention & control
Elephantiasis, Filarial - transmission
Endangered & extinct species
Epidemiology
Equilibrium analysis
Eradication
Extinction
Filariasis
Filaricides - therapeutic use
Health aspects
HIV
Human immunodeficiency virus
Humans
Hysteresis
Hysteresis loops
Infections
Infectious diseases
Infectious Diseases/Epidemiology and Control of Infectious Diseases
Infectious Diseases/Helminth Infections
Initial conditions
Larva - physiology
LDCs
Malaria
Mathematical models
Mathematics/Nonlinear Dynamics
Medical research
Medicine
Microfilariae - growth & development
Microfilariae - physiology
Morbidity
Mortality
Mosquitoes
Nonlinear systems
Parasites
Parasitic diseases
Parasitology
Partial differential equations
Population
Prevalence
Public Health and Epidemiology/Global Health
Resilience
Sensitivity and Specificity
Species extinction
Stability
System dynamics
Systems stability
Thresholds
Tropical diseases
Tuberculosis
Vector-borne diseases
Wuchereria bancrofti
title Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20ecological%20dynamics%20and%20eradicability%20of%20the%20vector%20borne%20macroparasitic%20disease,%20lymphatic%20filariasis&rft.jtitle=PloS%20one&rft.au=Gambhir,%20Manoj&rft.date=2008-08-06&rft.volume=3&rft.issue=8&rft.spage=e2874&rft.pages=e2874-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0002874&rft_dat=%3Cgale_plos_%3EA472636511%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312297349&rft_id=info:pmid/18716676&rft_galeid=A472636511&rft_doaj_id=oai_doaj_org_article_73d801c71c8440ba9eeca0fabac95781&rfr_iscdi=true