Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks
The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own act...
Gespeichert in:
Veröffentlicht in: | PloS one 2008-05, Vol.3 (5), p.e2088-e2088 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2088 |
---|---|
container_issue | 5 |
container_start_page | e2088 |
container_title | PloS one |
container_volume | 3 |
creator | Bakkum, Douglas J Chao, Zenas C Potter, Steve M |
description | The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own action potential. Tuning such input would provide a powerful mechanism to adjust neuron function and in turn, that of the brain. However, axonal plasticity of action potential timing is counter to conventional notions of stable propagation and to the dominant theories of activity-dependent plasticity focusing on synaptic efficacies.
Here we show the occurrence of activity-dependent plasticity of action potential propagation delays (up to 4 ms or 40% after minutes and 13 ms or 74% after hours) and amplitudes (up to 87%). We used a multi-electrode array to induce, detect, and track changes in propagation in multiple neurons while they adapted to different patterned stimuli in controlled neocortical networks in vitro. The changes did not occur when the same stimulation was repeated while blocking ionotropic gabaergic and glutamatergic receptors. Even though induction of changes in action potential timing and amplitude depended on synaptic transmission, the expression of these changes persisted in the presence of the synaptic receptor blockers.
We conclude that, along with changes in synaptic efficacy, propagation plasticity provides a cellular mechanism to tune neuronal network function in vitro and potentially learning and memory in the brain. |
doi_str_mv | 10.1371/journal.pone.0002088 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312287366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472652345</galeid><doaj_id>oai_doaj_org_article_fdddc871b34a4d4c94c652cb87bf0ca7</doaj_id><sourcerecordid>A472652345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728t-1c821c570855f17abd34f58697af65802d844209980af31ca2dcb108fc20436c3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLwoIXHfPVNr0RlsWPgYEFv27DaZJ2MqZNbdLV-fdmZqrOiBeSi4ST57zJe3iT5ClGS0xL_GrrprEHuxxcr5cIIYI4v5dc4oqSrCCI3j85XySPvN8ilFNeFA-TC8xZgTEpL5Nh7fo2C3rsUpDB3Jmwy5QedK90H9LBgg9GxmLqmgPg-nRwId4ZsOkwugFaOFSVtrBLoVcpdIM1YVI6NX0q3RgFItvr8N2NX_3j5EED1usn875IPr998-nmfba-fbe6uV5nsiQ8ZFhygmVeIp7nDS6hVpQ1OS-qEpoi54gozhhBVcURNBRLIErWGPFGEsRoIekieX7UHazzYh6WF5hiQnhJiyISqyOhHGzFMJoOxp1wYMSh4MZWwP7zVotGKSV5iWvKgCkmKyaLnMial3WDJJRR6_X82lR3Wsk4oBHsmej5TW82onV3glASbZAocDULjO7bpH0QnfFSWwu9dpMXRYV5yaK1RfLiL_Df3pZHqoX4fdM3Lr4q41K6MzImpjGxfs1KEn1QlseGl2cNkQn6R2hh8l6sPn74f_b2yzl7dcJuNNiw8c5O-8z4c5AdQTk670fd_B4eRmIf-F8-xT7wYg58bHt2Ovg_TXPC6U_Rq_4M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312287366</pqid></control><display><type>article</type><title>Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Bakkum, Douglas J ; Chao, Zenas C ; Potter, Steve M</creator><creatorcontrib>Bakkum, Douglas J ; Chao, Zenas C ; Potter, Steve M</creatorcontrib><description>The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own action potential. Tuning such input would provide a powerful mechanism to adjust neuron function and in turn, that of the brain. However, axonal plasticity of action potential timing is counter to conventional notions of stable propagation and to the dominant theories of activity-dependent plasticity focusing on synaptic efficacies.
Here we show the occurrence of activity-dependent plasticity of action potential propagation delays (up to 4 ms or 40% after minutes and 13 ms or 74% after hours) and amplitudes (up to 87%). We used a multi-electrode array to induce, detect, and track changes in propagation in multiple neurons while they adapted to different patterned stimuli in controlled neocortical networks in vitro. The changes did not occur when the same stimulation was repeated while blocking ionotropic gabaergic and glutamatergic receptors. Even though induction of changes in action potential timing and amplitude depended on synaptic transmission, the expression of these changes persisted in the presence of the synaptic receptor blockers.
We conclude that, along with changes in synaptic efficacy, propagation plasticity provides a cellular mechanism to tune neuronal network function in vitro and potentially learning and memory in the brain.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0002088</identifier><identifier>PMID: 18461127</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology ; Action potential ; Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Arrays ; Axonal plasticity ; Bicuculline - analogs & derivatives ; Bicuculline - pharmacology ; Biomedical engineering ; Biotechnology/Bioengineering ; Brain ; Cell Biology/Neuronal and Glial Cell Biology ; Cell Biology/Neuronal Signaling Mechanisms ; Cerebral Cortex - physiology ; Change detection ; Electrodes ; Engineering ; Evoked Potentials - physiology ; GABA ; Glutamatergic transmission ; Hippocampus - physiology ; Laboratories ; Learning ; Memory ; Neocortex ; Neural plasticity ; Neuronal Plasticity - physiology ; Neurons ; Neurons - drug effects ; Neurons - physiology ; Neuroplasticity ; Neuroscience ; Neuroscience/Neuronal and Glial Cell Biology ; Neuroscience/Neuronal Signaling Mechanisms ; Neuroscience/Theoretical Neuroscience ; Physiology/Neuronal Signaling Mechanisms ; Plastic foam ; Plastic properties ; Plasticity ; Propagation ; Reaction Time ; Receptors ; Sensory neurons ; Synapses - physiology ; Synaptic plasticity ; Synaptic strength ; Synaptic transmission ; Tetanus</subject><ispartof>PloS one, 2008-05, Vol.3 (5), p.e2088-e2088</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Bakkum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Bakkum et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728t-1c821c570855f17abd34f58697af65802d844209980af31ca2dcb108fc20436c3</citedby><cites>FETCH-LOGICAL-c728t-1c821c570855f17abd34f58697af65802d844209980af31ca2dcb108fc20436c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324202/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324202/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18461127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakkum, Douglas J</creatorcontrib><creatorcontrib>Chao, Zenas C</creatorcontrib><creatorcontrib>Potter, Steve M</creatorcontrib><title>Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own action potential. Tuning such input would provide a powerful mechanism to adjust neuron function and in turn, that of the brain. However, axonal plasticity of action potential timing is counter to conventional notions of stable propagation and to the dominant theories of activity-dependent plasticity focusing on synaptic efficacies.
Here we show the occurrence of activity-dependent plasticity of action potential propagation delays (up to 4 ms or 40% after minutes and 13 ms or 74% after hours) and amplitudes (up to 87%). We used a multi-electrode array to induce, detect, and track changes in propagation in multiple neurons while they adapted to different patterned stimuli in controlled neocortical networks in vitro. The changes did not occur when the same stimulation was repeated while blocking ionotropic gabaergic and glutamatergic receptors. Even though induction of changes in action potential timing and amplitude depended on synaptic transmission, the expression of these changes persisted in the presence of the synaptic receptor blockers.
We conclude that, along with changes in synaptic efficacy, propagation plasticity provides a cellular mechanism to tune neuronal network function in vitro and potentially learning and memory in the brain.</description><subject>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</subject><subject>Action potential</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Arrays</subject><subject>Axonal plasticity</subject><subject>Bicuculline - analogs & derivatives</subject><subject>Bicuculline - pharmacology</subject><subject>Biomedical engineering</subject><subject>Biotechnology/Bioengineering</subject><subject>Brain</subject><subject>Cell Biology/Neuronal and Glial Cell Biology</subject><subject>Cell Biology/Neuronal Signaling Mechanisms</subject><subject>Cerebral Cortex - physiology</subject><subject>Change detection</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Evoked Potentials - physiology</subject><subject>GABA</subject><subject>Glutamatergic transmission</subject><subject>Hippocampus - physiology</subject><subject>Laboratories</subject><subject>Learning</subject><subject>Memory</subject><subject>Neocortex</subject><subject>Neural plasticity</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neuroplasticity</subject><subject>Neuroscience</subject><subject>Neuroscience/Neuronal and Glial Cell Biology</subject><subject>Neuroscience/Neuronal Signaling Mechanisms</subject><subject>Neuroscience/Theoretical Neuroscience</subject><subject>Physiology/Neuronal Signaling Mechanisms</subject><subject>Plastic foam</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Propagation</subject><subject>Reaction Time</subject><subject>Receptors</subject><subject>Sensory neurons</subject><subject>Synapses - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic strength</subject><subject>Synaptic transmission</subject><subject>Tetanus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLwoIXHfPVNr0RlsWPgYEFv27DaZJ2MqZNbdLV-fdmZqrOiBeSi4ST57zJe3iT5ClGS0xL_GrrprEHuxxcr5cIIYI4v5dc4oqSrCCI3j85XySPvN8ilFNeFA-TC8xZgTEpL5Nh7fo2C3rsUpDB3Jmwy5QedK90H9LBgg9GxmLqmgPg-nRwId4ZsOkwugFaOFSVtrBLoVcpdIM1YVI6NX0q3RgFItvr8N2NX_3j5EED1usn875IPr998-nmfba-fbe6uV5nsiQ8ZFhygmVeIp7nDS6hVpQ1OS-qEpoi54gozhhBVcURNBRLIErWGPFGEsRoIekieX7UHazzYh6WF5hiQnhJiyISqyOhHGzFMJoOxp1wYMSh4MZWwP7zVotGKSV5iWvKgCkmKyaLnMial3WDJJRR6_X82lR3Wsk4oBHsmej5TW82onV3glASbZAocDULjO7bpH0QnfFSWwu9dpMXRYV5yaK1RfLiL_Df3pZHqoX4fdM3Lr4q41K6MzImpjGxfs1KEn1QlseGl2cNkQn6R2hh8l6sPn74f_b2yzl7dcJuNNiw8c5O-8z4c5AdQTk670fd_B4eRmIf-F8-xT7wYg58bHt2Ovg_TXPC6U_Rq_4M</recordid><startdate>20080507</startdate><enddate>20080507</enddate><creator>Bakkum, Douglas J</creator><creator>Chao, Zenas C</creator><creator>Potter, Steve M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080507</creationdate><title>Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks</title><author>Bakkum, Douglas J ; Chao, Zenas C ; Potter, Steve M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728t-1c821c570855f17abd34f58697af65802d844209980af31ca2dcb108fc20436c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology</topic><topic>Action potential</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Arrays</topic><topic>Axonal plasticity</topic><topic>Bicuculline - analogs & derivatives</topic><topic>Bicuculline - pharmacology</topic><topic>Biomedical engineering</topic><topic>Biotechnology/Bioengineering</topic><topic>Brain</topic><topic>Cell Biology/Neuronal and Glial Cell Biology</topic><topic>Cell Biology/Neuronal Signaling Mechanisms</topic><topic>Cerebral Cortex - physiology</topic><topic>Change detection</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Evoked Potentials - physiology</topic><topic>GABA</topic><topic>Glutamatergic transmission</topic><topic>Hippocampus - physiology</topic><topic>Laboratories</topic><topic>Learning</topic><topic>Memory</topic><topic>Neocortex</topic><topic>Neural plasticity</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neuroplasticity</topic><topic>Neuroscience</topic><topic>Neuroscience/Neuronal and Glial Cell Biology</topic><topic>Neuroscience/Neuronal Signaling Mechanisms</topic><topic>Neuroscience/Theoretical Neuroscience</topic><topic>Physiology/Neuronal Signaling Mechanisms</topic><topic>Plastic foam</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Propagation</topic><topic>Reaction Time</topic><topic>Receptors</topic><topic>Sensory neurons</topic><topic>Synapses - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic strength</topic><topic>Synaptic transmission</topic><topic>Tetanus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakkum, Douglas J</creatorcontrib><creatorcontrib>Chao, Zenas C</creatorcontrib><creatorcontrib>Potter, Steve M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakkum, Douglas J</au><au>Chao, Zenas C</au><au>Potter, Steve M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2008-05-07</date><risdate>2008</risdate><volume>3</volume><issue>5</issue><spage>e2088</spage><epage>e2088</epage><pages>e2088-e2088</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own action potential. Tuning such input would provide a powerful mechanism to adjust neuron function and in turn, that of the brain. However, axonal plasticity of action potential timing is counter to conventional notions of stable propagation and to the dominant theories of activity-dependent plasticity focusing on synaptic efficacies.
Here we show the occurrence of activity-dependent plasticity of action potential propagation delays (up to 4 ms or 40% after minutes and 13 ms or 74% after hours) and amplitudes (up to 87%). We used a multi-electrode array to induce, detect, and track changes in propagation in multiple neurons while they adapted to different patterned stimuli in controlled neocortical networks in vitro. The changes did not occur when the same stimulation was repeated while blocking ionotropic gabaergic and glutamatergic receptors. Even though induction of changes in action potential timing and amplitude depended on synaptic transmission, the expression of these changes persisted in the presence of the synaptic receptor blockers.
We conclude that, along with changes in synaptic efficacy, propagation plasticity provides a cellular mechanism to tune neuronal network function in vitro and potentially learning and memory in the brain.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18461127</pmid><doi>10.1371/journal.pone.0002088</doi><tpages>e2088</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2008-05, Vol.3 (5), p.e2088-e2088 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1312287366 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology Action potential Action Potentials - drug effects Action Potentials - physiology Animals Arrays Axonal plasticity Bicuculline - analogs & derivatives Bicuculline - pharmacology Biomedical engineering Biotechnology/Bioengineering Brain Cell Biology/Neuronal and Glial Cell Biology Cell Biology/Neuronal Signaling Mechanisms Cerebral Cortex - physiology Change detection Electrodes Engineering Evoked Potentials - physiology GABA Glutamatergic transmission Hippocampus - physiology Laboratories Learning Memory Neocortex Neural plasticity Neuronal Plasticity - physiology Neurons Neurons - drug effects Neurons - physiology Neuroplasticity Neuroscience Neuroscience/Neuronal and Glial Cell Biology Neuroscience/Neuronal Signaling Mechanisms Neuroscience/Theoretical Neuroscience Physiology/Neuronal Signaling Mechanisms Plastic foam Plastic properties Plasticity Propagation Reaction Time Receptors Sensory neurons Synapses - physiology Synaptic plasticity Synaptic strength Synaptic transmission Tetanus |
title | Long-term activity-dependent plasticity of action potential propagation delay and amplitude in cortical networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20activity-dependent%20plasticity%20of%20action%20potential%20propagation%20delay%20and%20amplitude%20in%20cortical%20networks&rft.jtitle=PloS%20one&rft.au=Bakkum,%20Douglas%20J&rft.date=2008-05-07&rft.volume=3&rft.issue=5&rft.spage=e2088&rft.epage=e2088&rft.pages=e2088-e2088&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0002088&rft_dat=%3Cgale_plos_%3EA472652345%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312287366&rft_id=info:pmid/18461127&rft_galeid=A472652345&rft_doaj_id=oai_doaj_org_article_fdddc871b34a4d4c94c652cb87bf0ca7&rfr_iscdi=true |