Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey

Modelling is widely used to inform decisions about management of malaria and acute febrile illnesses. Most models depend on estimates of the probability that untreated patients with malaria or bacterial illnesses will progress to severe disease or death. However, data on these key parameters are lac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-02, Vol.6 (2), p.e17439-e17439
Hauptverfasser: Lubell, Yoel, Staedke, Sarah G, Greenwood, Brian M, Kamya, Moses R, Molyneux, Malcolm, Newton, Paul N, Reyburn, Hugh, Snow, Robert W, D'Alessandro, Umberto, English, Mike, Day, Nick, Kremsner, Peter, Dondorp, Arjen, Mbacham, Wilfred, Dorsey, Grant, Owusu-Agyei, Seth, Maitland, Kathryn, Krishna, Sanjeev, Newton, Charles, Pasvol, Geoffrey, Taylor, Terrie, von Seidlein, Lorenz, White, Nicholas J, Binka, Fred, Mills, Anne, Whitty, Christopher J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e17439
container_issue 2
container_start_page e17439
container_title PloS one
container_volume 6
creator Lubell, Yoel
Staedke, Sarah G
Greenwood, Brian M
Kamya, Moses R
Molyneux, Malcolm
Newton, Paul N
Reyburn, Hugh
Snow, Robert W
D'Alessandro, Umberto
English, Mike
Day, Nick
Kremsner, Peter
Dondorp, Arjen
Mbacham, Wilfred
Dorsey, Grant
Owusu-Agyei, Seth
Maitland, Kathryn
Krishna, Sanjeev
Newton, Charles
Pasvol, Geoffrey
Taylor, Terrie
von Seidlein, Lorenz
White, Nicholas J
Binka, Fred
Mills, Anne
Whitty, Christopher J M
description Modelling is widely used to inform decisions about management of malaria and acute febrile illnesses. Most models depend on estimates of the probability that untreated patients with malaria or bacterial illnesses will progress to severe disease or death. However, data on these key parameters are lacking and assumptions are frequently made based on expert opinion. Widely diverse opinions can lead to conflicting outcomes in models they inform. A Delphi survey was conducted with malaria experts aiming to reach consensus on key parameters for public health and economic models, relating to the outcome of untreated febrile illnesses. Survey questions were stratified by malaria transmission intensity, patient age, and HIV prevalence. The impact of the variability in opinion on decision models is illustrated with a model previously used to assess the cost-effectiveness of malaria rapid diagnostic tests. Some consensus was reached around the probability that patients from higher transmission settings with untreated malaria would progress to severe disease (median 3%, inter-quartile range (IQR) 1-5%), and the probability that a non-malaria illness required antibiotics in areas of low HIV prevalence (median 20%). Children living in low transmission areas were considered to be at higher risk of progressing to severe malaria (median 30%, IQR 10-58%) than those from higher transmission areas (median 13%, IQR 7-30%). Estimates of the probability of dying from severe malaria were high in all settings (medians 60-73%). However, opinions varied widely for most parameters, and did not converge on resurveying. This study highlights the uncertainty around potential consequences of untreated malaria and bacterial illnesses. The lack of consensus on most parameters, the wide range of estimates, and the impact of variability in estimates on model outputs, demonstrate the importance of sensitivity analysis for decision models employing expert opinion. Results of such models should be interpreted cautiously. The diversity of expert opinion should be recognised when policy options are debated.
doi_str_mv 10.1371/journal.pone.0017439
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312192494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476903770</galeid><doaj_id>oai_doaj_org_article_864ecd20983047018e6a2e44bab3bbf8</doaj_id><sourcerecordid>A476903770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-c9ee810dddf3820bcf7627784cbb768be86ec9f0b06d54c3265e5b022b3e2be53</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDguLDjLm0aYsgLOttYGDB22tI0tOZjGkzJuni-OnN7HSXqeyD9CFN8jv_c3IuWfaU4DlhJXmzcYPvpZ1vXQ9zjEmZs_pedkpqRmecYnb_6P8kexTCBuOCVZw_zE4oYTWmZXma_Vman2B3aA3SxjVyQ9Sug4Ba59HQRw8yQoOkHiKgFpQ3FpCxtocQkOlRXAOK3m2Nvt42oE0wrkeybxBo17vOaNS5Bmx4iyR6D3a7NigM_gp2j7MHrbQBnozrWfb944dvF59ny8tPi4vz5UzzmsSZrgEqgpumaVlFsdJtyVPoVa6VKnmloOKg6xYrzJsi14zyAgqFKVUMqIKCnWXPD7pb64IY0xYEYYSSmuZ1nojFgWic3IitN530O-GkEdcHzq-E9NFoC6LiOeiG4rpiOC8xqYBLCnmupGJKtVXSejd6G1QHjYaURGknotOb3qzFyl2JpJeXfB_Mq1HAu18DhCg6EzRYK3twQxBVwcsy55gk8sU_5N2PG6mVTPGbvnXJrd5rivPksMasLHGi5ndQ6WsglTC1WJsqPzV4PTFITITfcSWHEMTi65f_Zy9_TNmXR-yhLYOzQ0xtFaZgfgC1dyF4aG9zTLDYT8hNNsR-QsQ4Icns2XF9bo1uRoL9BUCEDPM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312192494</pqid></control><display><type>article</type><title>Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lubell, Yoel ; Staedke, Sarah G ; Greenwood, Brian M ; Kamya, Moses R ; Molyneux, Malcolm ; Newton, Paul N ; Reyburn, Hugh ; Snow, Robert W ; D'Alessandro, Umberto ; English, Mike ; Day, Nick ; Kremsner, Peter ; Dondorp, Arjen ; Mbacham, Wilfred ; Dorsey, Grant ; Owusu-Agyei, Seth ; Maitland, Kathryn ; Krishna, Sanjeev ; Newton, Charles ; Pasvol, Geoffrey ; Taylor, Terrie ; von Seidlein, Lorenz ; White, Nicholas J ; Binka, Fred ; Mills, Anne ; Whitty, Christopher J M</creator><contributor>Snounou, Georges</contributor><creatorcontrib>Lubell, Yoel ; Staedke, Sarah G ; Greenwood, Brian M ; Kamya, Moses R ; Molyneux, Malcolm ; Newton, Paul N ; Reyburn, Hugh ; Snow, Robert W ; D'Alessandro, Umberto ; English, Mike ; Day, Nick ; Kremsner, Peter ; Dondorp, Arjen ; Mbacham, Wilfred ; Dorsey, Grant ; Owusu-Agyei, Seth ; Maitland, Kathryn ; Krishna, Sanjeev ; Newton, Charles ; Pasvol, Geoffrey ; Taylor, Terrie ; von Seidlein, Lorenz ; White, Nicholas J ; Binka, Fred ; Mills, Anne ; Whitty, Christopher J M ; Snounou, Georges</creatorcontrib><description>Modelling is widely used to inform decisions about management of malaria and acute febrile illnesses. Most models depend on estimates of the probability that untreated patients with malaria or bacterial illnesses will progress to severe disease or death. However, data on these key parameters are lacking and assumptions are frequently made based on expert opinion. Widely diverse opinions can lead to conflicting outcomes in models they inform. A Delphi survey was conducted with malaria experts aiming to reach consensus on key parameters for public health and economic models, relating to the outcome of untreated febrile illnesses. Survey questions were stratified by malaria transmission intensity, patient age, and HIV prevalence. The impact of the variability in opinion on decision models is illustrated with a model previously used to assess the cost-effectiveness of malaria rapid diagnostic tests. Some consensus was reached around the probability that patients from higher transmission settings with untreated malaria would progress to severe disease (median 3%, inter-quartile range (IQR) 1-5%), and the probability that a non-malaria illness required antibiotics in areas of low HIV prevalence (median 20%). Children living in low transmission areas were considered to be at higher risk of progressing to severe malaria (median 30%, IQR 10-58%) than those from higher transmission areas (median 13%, IQR 7-30%). Estimates of the probability of dying from severe malaria were high in all settings (medians 60-73%). However, opinions varied widely for most parameters, and did not converge on resurveying. This study highlights the uncertainty around potential consequences of untreated malaria and bacterial illnesses. The lack of consensus on most parameters, the wide range of estimates, and the impact of variability in estimates on model outputs, demonstrate the importance of sensitivity analysis for decision models employing expert opinion. Results of such models should be interpreted cautiously. The diversity of expert opinion should be recognised when policy options are debated.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0017439</identifier><identifier>PMID: 21390277</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acute Disease ; Adolescent ; Adult ; Antibiotics ; Bacteria ; Case management ; Child ; Child, Preschool ; Children ; Collaboration ; Cost analysis ; Critical Illness - economics ; Critical Illness - epidemiology ; Critical Illness - therapy ; Decision analysis ; Decision making ; Decision Support Techniques ; Delphi Technique ; Diagnostic systems ; Diagnostic tests ; Disease Progression ; Disease transmission ; Economic analysis ; Economic aspects ; Economic models ; Epidemiology ; Estimates ; Experts ; Fever - complications ; Fever - diagnosis ; Fever - economics ; Fever - epidemiology ; Health ; Health aspects ; Health visiting ; Hospitals ; Humans ; Hygiene ; Illnesses ; Infant ; Infant, Newborn ; Malaria ; Malaria - diagnosis ; Malaria - economics ; Malaria - epidemiology ; Mathematical models ; Medical research ; Medicine ; Midwifery ; Models, Economic ; Mortality ; Nursing ; Outcome Assessment (Health Care) - methods ; Outcome Assessment (Health Care) - statistics &amp; numerical data ; Parameter estimation ; Patients ; Physicians ; Pneumonia ; Probability ; Prognosis ; Public health ; Sensitivity analysis ; Surveys ; Tropical Climate ; Tropical environments ; Variability ; Vector-borne diseases ; Young Adult</subject><ispartof>PloS one, 2011-02, Vol.6 (2), p.e17439-e17439</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Lubell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Lubell et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-c9ee810dddf3820bcf7627784cbb768be86ec9f0b06d54c3265e5b022b3e2be53</citedby><cites>FETCH-LOGICAL-c691t-c9ee810dddf3820bcf7627784cbb768be86ec9f0b06d54c3265e5b022b3e2be53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044764/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044764/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21390277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Snounou, Georges</contributor><creatorcontrib>Lubell, Yoel</creatorcontrib><creatorcontrib>Staedke, Sarah G</creatorcontrib><creatorcontrib>Greenwood, Brian M</creatorcontrib><creatorcontrib>Kamya, Moses R</creatorcontrib><creatorcontrib>Molyneux, Malcolm</creatorcontrib><creatorcontrib>Newton, Paul N</creatorcontrib><creatorcontrib>Reyburn, Hugh</creatorcontrib><creatorcontrib>Snow, Robert W</creatorcontrib><creatorcontrib>D'Alessandro, Umberto</creatorcontrib><creatorcontrib>English, Mike</creatorcontrib><creatorcontrib>Day, Nick</creatorcontrib><creatorcontrib>Kremsner, Peter</creatorcontrib><creatorcontrib>Dondorp, Arjen</creatorcontrib><creatorcontrib>Mbacham, Wilfred</creatorcontrib><creatorcontrib>Dorsey, Grant</creatorcontrib><creatorcontrib>Owusu-Agyei, Seth</creatorcontrib><creatorcontrib>Maitland, Kathryn</creatorcontrib><creatorcontrib>Krishna, Sanjeev</creatorcontrib><creatorcontrib>Newton, Charles</creatorcontrib><creatorcontrib>Pasvol, Geoffrey</creatorcontrib><creatorcontrib>Taylor, Terrie</creatorcontrib><creatorcontrib>von Seidlein, Lorenz</creatorcontrib><creatorcontrib>White, Nicholas J</creatorcontrib><creatorcontrib>Binka, Fred</creatorcontrib><creatorcontrib>Mills, Anne</creatorcontrib><creatorcontrib>Whitty, Christopher J M</creatorcontrib><title>Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Modelling is widely used to inform decisions about management of malaria and acute febrile illnesses. Most models depend on estimates of the probability that untreated patients with malaria or bacterial illnesses will progress to severe disease or death. However, data on these key parameters are lacking and assumptions are frequently made based on expert opinion. Widely diverse opinions can lead to conflicting outcomes in models they inform. A Delphi survey was conducted with malaria experts aiming to reach consensus on key parameters for public health and economic models, relating to the outcome of untreated febrile illnesses. Survey questions were stratified by malaria transmission intensity, patient age, and HIV prevalence. The impact of the variability in opinion on decision models is illustrated with a model previously used to assess the cost-effectiveness of malaria rapid diagnostic tests. Some consensus was reached around the probability that patients from higher transmission settings with untreated malaria would progress to severe disease (median 3%, inter-quartile range (IQR) 1-5%), and the probability that a non-malaria illness required antibiotics in areas of low HIV prevalence (median 20%). Children living in low transmission areas were considered to be at higher risk of progressing to severe malaria (median 30%, IQR 10-58%) than those from higher transmission areas (median 13%, IQR 7-30%). Estimates of the probability of dying from severe malaria were high in all settings (medians 60-73%). However, opinions varied widely for most parameters, and did not converge on resurveying. This study highlights the uncertainty around potential consequences of untreated malaria and bacterial illnesses. The lack of consensus on most parameters, the wide range of estimates, and the impact of variability in estimates on model outputs, demonstrate the importance of sensitivity analysis for decision models employing expert opinion. Results of such models should be interpreted cautiously. The diversity of expert opinion should be recognised when policy options are debated.</description><subject>Acute Disease</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Case management</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Collaboration</subject><subject>Cost analysis</subject><subject>Critical Illness - economics</subject><subject>Critical Illness - epidemiology</subject><subject>Critical Illness - therapy</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decision Support Techniques</subject><subject>Delphi Technique</subject><subject>Diagnostic systems</subject><subject>Diagnostic tests</subject><subject>Disease Progression</subject><subject>Disease transmission</subject><subject>Economic analysis</subject><subject>Economic aspects</subject><subject>Economic models</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Experts</subject><subject>Fever - complications</subject><subject>Fever - diagnosis</subject><subject>Fever - economics</subject><subject>Fever - epidemiology</subject><subject>Health</subject><subject>Health aspects</subject><subject>Health visiting</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hygiene</subject><subject>Illnesses</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Malaria</subject><subject>Malaria - diagnosis</subject><subject>Malaria - economics</subject><subject>Malaria - epidemiology</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Midwifery</subject><subject>Models, Economic</subject><subject>Mortality</subject><subject>Nursing</subject><subject>Outcome Assessment (Health Care) - methods</subject><subject>Outcome Assessment (Health Care) - statistics &amp; numerical data</subject><subject>Parameter estimation</subject><subject>Patients</subject><subject>Physicians</subject><subject>Pneumonia</subject><subject>Probability</subject><subject>Prognosis</subject><subject>Public health</subject><subject>Sensitivity analysis</subject><subject>Surveys</subject><subject>Tropical Climate</subject><subject>Tropical environments</subject><subject>Variability</subject><subject>Vector-borne diseases</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDguLDjLm0aYsgLOttYGDB22tI0tOZjGkzJuni-OnN7HSXqeyD9CFN8jv_c3IuWfaU4DlhJXmzcYPvpZ1vXQ9zjEmZs_pedkpqRmecYnb_6P8kexTCBuOCVZw_zE4oYTWmZXma_Vman2B3aA3SxjVyQ9Sug4Ba59HQRw8yQoOkHiKgFpQ3FpCxtocQkOlRXAOK3m2Nvt42oE0wrkeybxBo17vOaNS5Bmx4iyR6D3a7NigM_gp2j7MHrbQBnozrWfb944dvF59ny8tPi4vz5UzzmsSZrgEqgpumaVlFsdJtyVPoVa6VKnmloOKg6xYrzJsi14zyAgqFKVUMqIKCnWXPD7pb64IY0xYEYYSSmuZ1nojFgWic3IitN530O-GkEdcHzq-E9NFoC6LiOeiG4rpiOC8xqYBLCnmupGJKtVXSejd6G1QHjYaURGknotOb3qzFyl2JpJeXfB_Mq1HAu18DhCg6EzRYK3twQxBVwcsy55gk8sU_5N2PG6mVTPGbvnXJrd5rivPksMasLHGi5ndQ6WsglTC1WJsqPzV4PTFITITfcSWHEMTi65f_Zy9_TNmXR-yhLYOzQ0xtFaZgfgC1dyF4aG9zTLDYT8hNNsR-QsQ4Icns2XF9bo1uRoL9BUCEDPM</recordid><startdate>20110224</startdate><enddate>20110224</enddate><creator>Lubell, Yoel</creator><creator>Staedke, Sarah G</creator><creator>Greenwood, Brian M</creator><creator>Kamya, Moses R</creator><creator>Molyneux, Malcolm</creator><creator>Newton, Paul N</creator><creator>Reyburn, Hugh</creator><creator>Snow, Robert W</creator><creator>D'Alessandro, Umberto</creator><creator>English, Mike</creator><creator>Day, Nick</creator><creator>Kremsner, Peter</creator><creator>Dondorp, Arjen</creator><creator>Mbacham, Wilfred</creator><creator>Dorsey, Grant</creator><creator>Owusu-Agyei, Seth</creator><creator>Maitland, Kathryn</creator><creator>Krishna, Sanjeev</creator><creator>Newton, Charles</creator><creator>Pasvol, Geoffrey</creator><creator>Taylor, Terrie</creator><creator>von Seidlein, Lorenz</creator><creator>White, Nicholas J</creator><creator>Binka, Fred</creator><creator>Mills, Anne</creator><creator>Whitty, Christopher J M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110224</creationdate><title>Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey</title><author>Lubell, Yoel ; Staedke, Sarah G ; Greenwood, Brian M ; Kamya, Moses R ; Molyneux, Malcolm ; Newton, Paul N ; Reyburn, Hugh ; Snow, Robert W ; D'Alessandro, Umberto ; English, Mike ; Day, Nick ; Kremsner, Peter ; Dondorp, Arjen ; Mbacham, Wilfred ; Dorsey, Grant ; Owusu-Agyei, Seth ; Maitland, Kathryn ; Krishna, Sanjeev ; Newton, Charles ; Pasvol, Geoffrey ; Taylor, Terrie ; von Seidlein, Lorenz ; White, Nicholas J ; Binka, Fred ; Mills, Anne ; Whitty, Christopher J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-c9ee810dddf3820bcf7627784cbb768be86ec9f0b06d54c3265e5b022b3e2be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acute Disease</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Case management</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Collaboration</topic><topic>Cost analysis</topic><topic>Critical Illness - economics</topic><topic>Critical Illness - epidemiology</topic><topic>Critical Illness - therapy</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decision Support Techniques</topic><topic>Delphi Technique</topic><topic>Diagnostic systems</topic><topic>Diagnostic tests</topic><topic>Disease Progression</topic><topic>Disease transmission</topic><topic>Economic analysis</topic><topic>Economic aspects</topic><topic>Economic models</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Experts</topic><topic>Fever - complications</topic><topic>Fever - diagnosis</topic><topic>Fever - economics</topic><topic>Fever - epidemiology</topic><topic>Health</topic><topic>Health aspects</topic><topic>Health visiting</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hygiene</topic><topic>Illnesses</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Malaria</topic><topic>Malaria - diagnosis</topic><topic>Malaria - economics</topic><topic>Malaria - epidemiology</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Midwifery</topic><topic>Models, Economic</topic><topic>Mortality</topic><topic>Nursing</topic><topic>Outcome Assessment (Health Care) - methods</topic><topic>Outcome Assessment (Health Care) - statistics &amp; numerical data</topic><topic>Parameter estimation</topic><topic>Patients</topic><topic>Physicians</topic><topic>Pneumonia</topic><topic>Probability</topic><topic>Prognosis</topic><topic>Public health</topic><topic>Sensitivity analysis</topic><topic>Surveys</topic><topic>Tropical Climate</topic><topic>Tropical environments</topic><topic>Variability</topic><topic>Vector-borne diseases</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubell, Yoel</creatorcontrib><creatorcontrib>Staedke, Sarah G</creatorcontrib><creatorcontrib>Greenwood, Brian M</creatorcontrib><creatorcontrib>Kamya, Moses R</creatorcontrib><creatorcontrib>Molyneux, Malcolm</creatorcontrib><creatorcontrib>Newton, Paul N</creatorcontrib><creatorcontrib>Reyburn, Hugh</creatorcontrib><creatorcontrib>Snow, Robert W</creatorcontrib><creatorcontrib>D'Alessandro, Umberto</creatorcontrib><creatorcontrib>English, Mike</creatorcontrib><creatorcontrib>Day, Nick</creatorcontrib><creatorcontrib>Kremsner, Peter</creatorcontrib><creatorcontrib>Dondorp, Arjen</creatorcontrib><creatorcontrib>Mbacham, Wilfred</creatorcontrib><creatorcontrib>Dorsey, Grant</creatorcontrib><creatorcontrib>Owusu-Agyei, Seth</creatorcontrib><creatorcontrib>Maitland, Kathryn</creatorcontrib><creatorcontrib>Krishna, Sanjeev</creatorcontrib><creatorcontrib>Newton, Charles</creatorcontrib><creatorcontrib>Pasvol, Geoffrey</creatorcontrib><creatorcontrib>Taylor, Terrie</creatorcontrib><creatorcontrib>von Seidlein, Lorenz</creatorcontrib><creatorcontrib>White, Nicholas J</creatorcontrib><creatorcontrib>Binka, Fred</creatorcontrib><creatorcontrib>Mills, Anne</creatorcontrib><creatorcontrib>Whitty, Christopher J M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubell, Yoel</au><au>Staedke, Sarah G</au><au>Greenwood, Brian M</au><au>Kamya, Moses R</au><au>Molyneux, Malcolm</au><au>Newton, Paul N</au><au>Reyburn, Hugh</au><au>Snow, Robert W</au><au>D'Alessandro, Umberto</au><au>English, Mike</au><au>Day, Nick</au><au>Kremsner, Peter</au><au>Dondorp, Arjen</au><au>Mbacham, Wilfred</au><au>Dorsey, Grant</au><au>Owusu-Agyei, Seth</au><au>Maitland, Kathryn</au><au>Krishna, Sanjeev</au><au>Newton, Charles</au><au>Pasvol, Geoffrey</au><au>Taylor, Terrie</au><au>von Seidlein, Lorenz</au><au>White, Nicholas J</au><au>Binka, Fred</au><au>Mills, Anne</au><au>Whitty, Christopher J M</au><au>Snounou, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-02-24</date><risdate>2011</risdate><volume>6</volume><issue>2</issue><spage>e17439</spage><epage>e17439</epage><pages>e17439-e17439</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Modelling is widely used to inform decisions about management of malaria and acute febrile illnesses. Most models depend on estimates of the probability that untreated patients with malaria or bacterial illnesses will progress to severe disease or death. However, data on these key parameters are lacking and assumptions are frequently made based on expert opinion. Widely diverse opinions can lead to conflicting outcomes in models they inform. A Delphi survey was conducted with malaria experts aiming to reach consensus on key parameters for public health and economic models, relating to the outcome of untreated febrile illnesses. Survey questions were stratified by malaria transmission intensity, patient age, and HIV prevalence. The impact of the variability in opinion on decision models is illustrated with a model previously used to assess the cost-effectiveness of malaria rapid diagnostic tests. Some consensus was reached around the probability that patients from higher transmission settings with untreated malaria would progress to severe disease (median 3%, inter-quartile range (IQR) 1-5%), and the probability that a non-malaria illness required antibiotics in areas of low HIV prevalence (median 20%). Children living in low transmission areas were considered to be at higher risk of progressing to severe malaria (median 30%, IQR 10-58%) than those from higher transmission areas (median 13%, IQR 7-30%). Estimates of the probability of dying from severe malaria were high in all settings (medians 60-73%). However, opinions varied widely for most parameters, and did not converge on resurveying. This study highlights the uncertainty around potential consequences of untreated malaria and bacterial illnesses. The lack of consensus on most parameters, the wide range of estimates, and the impact of variability in estimates on model outputs, demonstrate the importance of sensitivity analysis for decision models employing expert opinion. Results of such models should be interpreted cautiously. The diversity of expert opinion should be recognised when policy options are debated.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21390277</pmid><doi>10.1371/journal.pone.0017439</doi><tpages>e17439</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-02, Vol.6 (2), p.e17439-e17439
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312192494
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acute Disease
Adolescent
Adult
Antibiotics
Bacteria
Case management
Child
Child, Preschool
Children
Collaboration
Cost analysis
Critical Illness - economics
Critical Illness - epidemiology
Critical Illness - therapy
Decision analysis
Decision making
Decision Support Techniques
Delphi Technique
Diagnostic systems
Diagnostic tests
Disease Progression
Disease transmission
Economic analysis
Economic aspects
Economic models
Epidemiology
Estimates
Experts
Fever - complications
Fever - diagnosis
Fever - economics
Fever - epidemiology
Health
Health aspects
Health visiting
Hospitals
Humans
Hygiene
Illnesses
Infant
Infant, Newborn
Malaria
Malaria - diagnosis
Malaria - economics
Malaria - epidemiology
Mathematical models
Medical research
Medicine
Midwifery
Models, Economic
Mortality
Nursing
Outcome Assessment (Health Care) - methods
Outcome Assessment (Health Care) - statistics & numerical data
Parameter estimation
Patients
Physicians
Pneumonia
Probability
Prognosis
Public health
Sensitivity analysis
Surveys
Tropical Climate
Tropical environments
Variability
Vector-borne diseases
Young Adult
title Likely health outcomes for untreated acute febrile illness in the tropics in decision and economic models; a Delphi survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Likely%20health%20outcomes%20for%20untreated%20acute%20febrile%20illness%20in%20the%20tropics%20in%20decision%20and%20economic%20models;%20a%20Delphi%20survey&rft.jtitle=PloS%20one&rft.au=Lubell,%20Yoel&rft.date=2011-02-24&rft.volume=6&rft.issue=2&rft.spage=e17439&rft.epage=e17439&rft.pages=e17439-e17439&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0017439&rft_dat=%3Cgale_plos_%3EA476903770%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312192494&rft_id=info:pmid/21390277&rft_galeid=A476903770&rft_doaj_id=oai_doaj_org_article_864ecd20983047018e6a2e44bab3bbf8&rfr_iscdi=true