Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner

Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-12, Vol.5 (12), p.e15686-e15686
Hauptverfasser: Miller, Thomas W, Isenberg, Jeff S, Shih, Hubert B, Wang, Yichen, Roberts, David D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e15686
container_issue 12
container_start_page e15686
container_title PloS one
container_volume 5
creator Miller, Thomas W
Isenberg, Jeff S
Shih, Hubert B
Wang, Yichen
Roberts, David D
description Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.
doi_str_mv 10.1371/journal.pone.0015686
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1312181147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f926b08402fe460fb96da10dde2c426f</doaj_id><sourcerecordid>2900557701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4af4a1c7ac73e6ea3579d45d5a69f29857b858a0966b0771be2abe121590a27d3</originalsourceid><addsrcrecordid>eNptUstuFDEQtBCIhMAfIBiJQ06z-G3PBSnahCQoPA5wtnrGno1XM_bGnkXKb-VD-Cac7CRKECe3uquruqxC6C3BC8IU-biO2xRgWGxicAuMiZBaPkP7pGG0lhSz54_qPfQq5zXGgmkpX6I9SkpTELqPvhyN10P0tv5zU_lw6Vs_5epbrLvTrz-q7FdFwYdVGVVQLY-ZrCsItlRc1dZtXLAuTNUIIbj0Gr3oYcjuzfweoF-fT34uz-qL76fny6OLuuNCTDWHngPpFHSKOemACdVYLqwA2fS00UK1WmjAjZQtVoq0jkLrCCWiwUCVZQfo_Y53M8Rs5m_IhrCC0YRwVRDnO4SNsDab5EdI1yaCN3eNmFYG0uS7wZm-oUVGc0x7xyXu20ZaINhaRztOZV-4Ps1q23Z0tit-EwxPSJ9Ogr80q_jbMIy1orIQHM4EKV5tXZ7M6HPnhgGCi9tsNKVCSE55QX74B_l_c3yH6lLMObn-4RaCzW0y7rfMbTLMnIyy9u6xj4el-yiwv-YjtLo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312181147</pqid></control><display><type>article</type><title>Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Miller, Thomas W ; Isenberg, Jeff S ; Shih, Hubert B ; Wang, Yichen ; Roberts, David D</creator><creatorcontrib>Miller, Thomas W ; Isenberg, Jeff S ; Shih, Hubert B ; Wang, Yichen ; Roberts, David D</creatorcontrib><description>Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0015686</identifier><identifier>PMID: 21203512</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Alzheimer's disease ; Alzheimers disease ; Amyloid beta-Peptides - metabolism ; Angiogenesis ; Animals ; Antigens ; Aorta - cytology ; Apoptosis ; Biology ; Brain research ; Cancer ; Cattle ; CD36 antigen ; CD36 Antigens - biosynthesis ; CD47 Antigen - biosynthesis ; Cell growth ; Cell surface ; Coronary vessels ; Cyclic GMP ; Cyclic GMP - metabolism ; Cytokines ; Endothelial Cells - cytology ; Endothelium ; Fatty acids ; Guanylate cyclase ; Humans ; Kinases ; Laboratories ; Leukemia ; Ligands ; Medical research ; Medicine ; Metabolism ; Mice ; Muscles ; Neurodegenerative diseases ; Nitric oxide ; Nitric Oxide - metabolism ; Pathogenesis ; Pathology ; Peptides ; Phosphorylation ; Physiology ; Platelets ; Protein Conformation ; Proteins ; Pyrazoles - pharmacology ; Pyridines - pharmacology ; Receptors ; Rodents ; Scavenger receptors ; Signal Transduction ; Signaling ; Smooth muscle ; Swine ; Thrombospondin ; Umbilical Veins - cytology</subject><ispartof>PloS one, 2010-12, Vol.5 (12), p.e15686-e15686</ispartof><rights>2010. This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-4af4a1c7ac73e6ea3579d45d5a69f29857b858a0966b0771be2abe121590a27d3</citedby><cites>FETCH-LOGICAL-c455t-4af4a1c7ac73e6ea3579d45d5a69f29857b858a0966b0771be2abe121590a27d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008726/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008726/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21203512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Thomas W</creatorcontrib><creatorcontrib>Isenberg, Jeff S</creatorcontrib><creatorcontrib>Shih, Hubert B</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Roberts, David D</creatorcontrib><title>Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.</description><subject>Activation</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Antigens</subject><subject>Aorta - cytology</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Brain research</subject><subject>Cancer</subject><subject>Cattle</subject><subject>CD36 antigen</subject><subject>CD36 Antigens - biosynthesis</subject><subject>CD47 Antigen - biosynthesis</subject><subject>Cell growth</subject><subject>Cell surface</subject><subject>Coronary vessels</subject><subject>Cyclic GMP</subject><subject>Cyclic GMP - metabolism</subject><subject>Cytokines</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelium</subject><subject>Fatty acids</subject><subject>Guanylate cyclase</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Leukemia</subject><subject>Ligands</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Muscles</subject><subject>Neurodegenerative diseases</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Platelets</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyridines - pharmacology</subject><subject>Receptors</subject><subject>Rodents</subject><subject>Scavenger receptors</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Smooth muscle</subject><subject>Swine</subject><subject>Thrombospondin</subject><subject>Umbilical Veins - cytology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuFDEQtBCIhMAfIBiJQ06z-G3PBSnahCQoPA5wtnrGno1XM_bGnkXKb-VD-Cac7CRKECe3uquruqxC6C3BC8IU-biO2xRgWGxicAuMiZBaPkP7pGG0lhSz54_qPfQq5zXGgmkpX6I9SkpTELqPvhyN10P0tv5zU_lw6Vs_5epbrLvTrz-q7FdFwYdVGVVQLY-ZrCsItlRc1dZtXLAuTNUIIbj0Gr3oYcjuzfweoF-fT34uz-qL76fny6OLuuNCTDWHngPpFHSKOemACdVYLqwA2fS00UK1WmjAjZQtVoq0jkLrCCWiwUCVZQfo_Y53M8Rs5m_IhrCC0YRwVRDnO4SNsDab5EdI1yaCN3eNmFYG0uS7wZm-oUVGc0x7xyXu20ZaINhaRztOZV-4Ps1q23Z0tit-EwxPSJ9Ogr80q_jbMIy1orIQHM4EKV5tXZ7M6HPnhgGCi9tsNKVCSE55QX74B_l_c3yH6lLMObn-4RaCzW0y7rfMbTLMnIyy9u6xj4el-yiwv-YjtLo</recordid><startdate>20101222</startdate><enddate>20101222</enddate><creator>Miller, Thomas W</creator><creator>Isenberg, Jeff S</creator><creator>Shih, Hubert B</creator><creator>Wang, Yichen</creator><creator>Roberts, David D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101222</creationdate><title>Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner</title><author>Miller, Thomas W ; Isenberg, Jeff S ; Shih, Hubert B ; Wang, Yichen ; Roberts, David D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4af4a1c7ac73e6ea3579d45d5a69f29857b858a0966b0771be2abe121590a27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activation</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Antigens</topic><topic>Aorta - cytology</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Brain research</topic><topic>Cancer</topic><topic>Cattle</topic><topic>CD36 antigen</topic><topic>CD36 Antigens - biosynthesis</topic><topic>CD47 Antigen - biosynthesis</topic><topic>Cell growth</topic><topic>Cell surface</topic><topic>Coronary vessels</topic><topic>Cyclic GMP</topic><topic>Cyclic GMP - metabolism</topic><topic>Cytokines</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelium</topic><topic>Fatty acids</topic><topic>Guanylate cyclase</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Leukemia</topic><topic>Ligands</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Muscles</topic><topic>Neurodegenerative diseases</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Platelets</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyridines - pharmacology</topic><topic>Receptors</topic><topic>Rodents</topic><topic>Scavenger receptors</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Smooth muscle</topic><topic>Swine</topic><topic>Thrombospondin</topic><topic>Umbilical Veins - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Thomas W</creatorcontrib><creatorcontrib>Isenberg, Jeff S</creatorcontrib><creatorcontrib>Shih, Hubert B</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Roberts, David D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Thomas W</au><au>Isenberg, Jeff S</au><au>Shih, Hubert B</au><au>Wang, Yichen</au><au>Roberts, David D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-12-22</date><risdate>2010</risdate><volume>5</volume><issue>12</issue><spage>e15686</spage><epage>e15686</epage><pages>e15686-e15686</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21203512</pmid><doi>10.1371/journal.pone.0015686</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-12, Vol.5 (12), p.e15686-e15686
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312181147
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Activation
Alzheimer's disease
Alzheimers disease
Amyloid beta-Peptides - metabolism
Angiogenesis
Animals
Antigens
Aorta - cytology
Apoptosis
Biology
Brain research
Cancer
Cattle
CD36 antigen
CD36 Antigens - biosynthesis
CD47 Antigen - biosynthesis
Cell growth
Cell surface
Coronary vessels
Cyclic GMP
Cyclic GMP - metabolism
Cytokines
Endothelial Cells - cytology
Endothelium
Fatty acids
Guanylate cyclase
Humans
Kinases
Laboratories
Leukemia
Ligands
Medical research
Medicine
Metabolism
Mice
Muscles
Neurodegenerative diseases
Nitric oxide
Nitric Oxide - metabolism
Pathogenesis
Pathology
Peptides
Phosphorylation
Physiology
Platelets
Protein Conformation
Proteins
Pyrazoles - pharmacology
Pyridines - pharmacology
Receptors
Rodents
Scavenger receptors
Signal Transduction
Signaling
Smooth muscle
Swine
Thrombospondin
Umbilical Veins - cytology
title Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloid-%CE%B2%20inhibits%20No-cGMP%20signaling%20in%20a%20CD36-%20and%20CD47-dependent%20manner&rft.jtitle=PloS%20one&rft.au=Miller,%20Thomas%20W&rft.date=2010-12-22&rft.volume=5&rft.issue=12&rft.spage=e15686&rft.epage=e15686&rft.pages=e15686-e15686&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0015686&rft_dat=%3Cproquest_plos_%3E2900557701%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312181147&rft_id=info:pmid/21203512&rft_doaj_id=oai_doaj_org_article_f926b08402fe460fb96da10dde2c426f&rfr_iscdi=true