Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics

Angiogenin (ANG) acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-12, Vol.6 (12), p.e28797-e28797
Hauptverfasser: Wei, Saisai, Gao, Xiangwei, Du, Juan, Su, Jinfeng, Xu, Zhengping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e28797
container_issue 12
container_start_page e28797
container_title PloS one
container_volume 6
creator Wei, Saisai
Gao, Xiangwei
Du, Juan
Su, Jinfeng
Xu, Zhengping
description Angiogenin (ANG) acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.
doi_str_mv 10.1371/journal.pone.0028797
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312178586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476860368</galeid><doaj_id>oai_doaj_org_article_02e63c0ce62645e89141182d6d19236e</doaj_id><sourcerecordid>A476860368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-7b674d788afd47d42d21d56c3311747bc424b55f7855458fb02ed90993d3ba4a3</originalsourceid><addsrcrecordid>eNqNk1uL1DAYhoso7jr6D0QLguLFjM2hSXsjDIuHgYUFT7chTb52MmSSMWnF-femTneZyl5IL9okz_t-zXfIsueoWCHC0budH4KTdnXwDlZFgSte8wfZJaoJXjJckIdn3xfZkxh3RVGSirHH2QXGqKY1Ki-zZu064ztwxuXgttIpiLkCa_O96YLsjXd5c8wDdINNK9flsQ8QY96aBkIuY4R9Y4-5dDpvvZI2l3oLcZTpo5N7o-LT7FErbYRn03uRff_44dvV5-X1zafN1fp6qViN-iVvGKeaV5VsNeWaYo2RLpkiBCFOeaMopk1ZtrwqS1pWbVNg0HVR10STRlJJFtnLk-_B-iim9ESBCMIoiSqWiM2J0F7uxCGYvQxH4aURfzd86IQMvVEWRDJnRBUKGGa0hKpGFKEKa6ZRjQmD5PV-ijY0e9AKXB-knZnOT5zZis7_EgQTXpY4GbyZDIL_OUDsxd7EMfPSgR-iqFGKTOpUw0X26h_y_stNVCfT_xvX-hRWjZ5iTTmrWEFYlajVPVR6NKRapVZqTdqfCd7OBInp4XffySFGsfn65f_Zmx9z9vUZuwVp-230dhg7Ls5BegJV8DEGaO9yjAoxTsJtNsQ4CWKahCR7cV6fO9Ft65M_g-0C-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312178586</pqid></control><display><type>article</type><title>Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wei, Saisai ; Gao, Xiangwei ; Du, Juan ; Su, Jinfeng ; Xu, Zhengping</creator><contributor>Addison, Christina Lynn</contributor><creatorcontrib>Wei, Saisai ; Gao, Xiangwei ; Du, Juan ; Su, Jinfeng ; Xu, Zhengping ; Addison, Christina Lynn</creatorcontrib><description>Angiogenin (ANG) acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028797</identifier><identifier>PMID: 22194915</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Adhesion ; Angiogenin ; Assembly ; Biology ; Cancer ; Cancer metastasis ; Cell adhesion &amp; migration ; Cell migration ; Cell Movement ; Cytoplasm ; Cytoskeleton ; Cytoskeleton - metabolism ; Down-Regulation ; Endothelial cells ; Environmental health ; Enzyme Activation ; Fibers ; Focal adhesion kinase ; Focal Adhesion Protein-Tyrosine Kinases - metabolism ; Focal Adhesions - metabolism ; Gene expression ; HeLa Cells ; Human Umbilical Vein Endothelial Cells - cytology ; Humans ; Identification ; Immunoprecipitation ; Kinases ; Mammals ; Mass Spectrometry ; Medicine ; Metastases ; Molecular Sequence Annotation ; Motility ; Muscle proteins ; Muscles ; Myosin ; Peptides ; Phosphorylation ; Protein Binding ; Proteins ; Pseudopodia - metabolism ; Ribonuclease, Pancreatic - deficiency ; Ribonuclease, Pancreatic - metabolism ; Smooth muscle ; Stress ; Stress Fibers - metabolism ; Stresses ; α-Actinin</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28797-e28797</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Wei et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-7b674d788afd47d42d21d56c3311747bc424b55f7855458fb02ed90993d3ba4a3</citedby><cites>FETCH-LOGICAL-c691t-7b674d788afd47d42d21d56c3311747bc424b55f7855458fb02ed90993d3ba4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237552/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237552/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22194915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Addison, Christina Lynn</contributor><creatorcontrib>Wei, Saisai</creatorcontrib><creatorcontrib>Gao, Xiangwei</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Su, Jinfeng</creatorcontrib><creatorcontrib>Xu, Zhengping</creatorcontrib><title>Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Angiogenin (ANG) acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.</description><subject>Actin</subject><subject>Adhesion</subject><subject>Angiogenin</subject><subject>Assembly</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cytoplasm</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - metabolism</subject><subject>Down-Regulation</subject><subject>Endothelial cells</subject><subject>Environmental health</subject><subject>Enzyme Activation</subject><subject>Fibers</subject><subject>Focal adhesion kinase</subject><subject>Focal Adhesion Protein-Tyrosine Kinases - metabolism</subject><subject>Focal Adhesions - metabolism</subject><subject>Gene expression</subject><subject>HeLa Cells</subject><subject>Human Umbilical Vein Endothelial Cells - cytology</subject><subject>Humans</subject><subject>Identification</subject><subject>Immunoprecipitation</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Mass Spectrometry</subject><subject>Medicine</subject><subject>Metastases</subject><subject>Molecular Sequence Annotation</subject><subject>Motility</subject><subject>Muscle proteins</subject><subject>Muscles</subject><subject>Myosin</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Pseudopodia - metabolism</subject><subject>Ribonuclease, Pancreatic - deficiency</subject><subject>Ribonuclease, Pancreatic - metabolism</subject><subject>Smooth muscle</subject><subject>Stress</subject><subject>Stress Fibers - metabolism</subject><subject>Stresses</subject><subject>α-Actinin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAYhoso7jr6D0QLguLFjM2hSXsjDIuHgYUFT7chTb52MmSSMWnF-femTneZyl5IL9okz_t-zXfIsueoWCHC0budH4KTdnXwDlZFgSte8wfZJaoJXjJckIdn3xfZkxh3RVGSirHH2QXGqKY1Ki-zZu064ztwxuXgttIpiLkCa_O96YLsjXd5c8wDdINNK9flsQ8QY96aBkIuY4R9Y4-5dDpvvZI2l3oLcZTpo5N7o-LT7FErbYRn03uRff_44dvV5-X1zafN1fp6qViN-iVvGKeaV5VsNeWaYo2RLpkiBCFOeaMopk1ZtrwqS1pWbVNg0HVR10STRlJJFtnLk-_B-iim9ESBCMIoiSqWiM2J0F7uxCGYvQxH4aURfzd86IQMvVEWRDJnRBUKGGa0hKpGFKEKa6ZRjQmD5PV-ijY0e9AKXB-knZnOT5zZis7_EgQTXpY4GbyZDIL_OUDsxd7EMfPSgR-iqFGKTOpUw0X26h_y_stNVCfT_xvX-hRWjZ5iTTmrWEFYlajVPVR6NKRapVZqTdqfCd7OBInp4XffySFGsfn65f_Zmx9z9vUZuwVp-230dhg7Ls5BegJV8DEGaO9yjAoxTsJtNsQ4CWKahCR7cV6fO9Ft65M_g-0C-A</recordid><startdate>20111214</startdate><enddate>20111214</enddate><creator>Wei, Saisai</creator><creator>Gao, Xiangwei</creator><creator>Du, Juan</creator><creator>Su, Jinfeng</creator><creator>Xu, Zhengping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111214</creationdate><title>Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics</title><author>Wei, Saisai ; Gao, Xiangwei ; Du, Juan ; Su, Jinfeng ; Xu, Zhengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-7b674d788afd47d42d21d56c3311747bc424b55f7855458fb02ed90993d3ba4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actin</topic><topic>Adhesion</topic><topic>Angiogenin</topic><topic>Assembly</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cytoplasm</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - metabolism</topic><topic>Down-Regulation</topic><topic>Endothelial cells</topic><topic>Environmental health</topic><topic>Enzyme Activation</topic><topic>Fibers</topic><topic>Focal adhesion kinase</topic><topic>Focal Adhesion Protein-Tyrosine Kinases - metabolism</topic><topic>Focal Adhesions - metabolism</topic><topic>Gene expression</topic><topic>HeLa Cells</topic><topic>Human Umbilical Vein Endothelial Cells - cytology</topic><topic>Humans</topic><topic>Identification</topic><topic>Immunoprecipitation</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Mass Spectrometry</topic><topic>Medicine</topic><topic>Metastases</topic><topic>Molecular Sequence Annotation</topic><topic>Motility</topic><topic>Muscle proteins</topic><topic>Muscles</topic><topic>Myosin</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Pseudopodia - metabolism</topic><topic>Ribonuclease, Pancreatic - deficiency</topic><topic>Ribonuclease, Pancreatic - metabolism</topic><topic>Smooth muscle</topic><topic>Stress</topic><topic>Stress Fibers - metabolism</topic><topic>Stresses</topic><topic>α-Actinin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Saisai</creatorcontrib><creatorcontrib>Gao, Xiangwei</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Su, Jinfeng</creatorcontrib><creatorcontrib>Xu, Zhengping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Saisai</au><au>Gao, Xiangwei</au><au>Du, Juan</au><au>Su, Jinfeng</au><au>Xu, Zhengping</au><au>Addison, Christina Lynn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-14</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28797</spage><epage>e28797</epage><pages>e28797-e28797</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Angiogenin (ANG) acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22194915</pmid><doi>10.1371/journal.pone.0028797</doi><tpages>e28797</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-12, Vol.6 (12), p.e28797-e28797
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312178586
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Actin
Adhesion
Angiogenin
Assembly
Biology
Cancer
Cancer metastasis
Cell adhesion & migration
Cell migration
Cell Movement
Cytoplasm
Cytoskeleton
Cytoskeleton - metabolism
Down-Regulation
Endothelial cells
Environmental health
Enzyme Activation
Fibers
Focal adhesion kinase
Focal Adhesion Protein-Tyrosine Kinases - metabolism
Focal Adhesions - metabolism
Gene expression
HeLa Cells
Human Umbilical Vein Endothelial Cells - cytology
Humans
Identification
Immunoprecipitation
Kinases
Mammals
Mass Spectrometry
Medicine
Metastases
Molecular Sequence Annotation
Motility
Muscle proteins
Muscles
Myosin
Peptides
Phosphorylation
Protein Binding
Proteins
Pseudopodia - metabolism
Ribonuclease, Pancreatic - deficiency
Ribonuclease, Pancreatic - metabolism
Smooth muscle
Stress
Stress Fibers - metabolism
Stresses
α-Actinin
title Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenin%20enhances%20cell%20migration%20by%20regulating%20stress%20fiber%20assembly%20and%20focal%20adhesion%20dynamics&rft.jtitle=PloS%20one&rft.au=Wei,%20Saisai&rft.date=2011-12-14&rft.volume=6&rft.issue=12&rft.spage=e28797&rft.epage=e28797&rft.pages=e28797-e28797&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028797&rft_dat=%3Cgale_plos_%3EA476860368%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312178586&rft_id=info:pmid/22194915&rft_galeid=A476860368&rft_doaj_id=oai_doaj_org_article_02e63c0ce62645e89141182d6d19236e&rfr_iscdi=true