Comparison of strategies to detect epistasis from eQTL data
Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover addit...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-12, Vol.6 (12), p.e28415-e28415 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e28415 |
---|---|
container_issue | 12 |
container_start_page | e28415 |
container_title | PloS one |
container_volume | 6 |
creator | Kapur, Karen Schüpbach, Thierry Xenarios, Ioannis Kutalik, Zoltán Bergmann, Sven |
description | Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects. |
doi_str_mv | 10.1371/journal.pone.0028415 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312160070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476860064</galeid><doaj_id>oai_doaj_org_article_4470daa0af994d6dbb93508e45a4efe9</doaj_id><sourcerecordid>A476860064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-dd3efffb0ba7ff6e217a2c1ce0febfa643f7e588d2987dccc7f72f45b2a9b1763</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLguLFjPlq0yIIy-DHwMCirt6GNDmZydA2s0kq-u_N7HSXqeyF5CLh5DnvyTl5s-w5RgtMOX63c4PvZbvYux4WCJGK4eJBdo5rSuYlQfThyfksexLCDqGCVmX5ODsjhKCiZvV59n7pur30Nrg-dyYP0csIGwshjy7XEEHFHPY2RBlsyI13XQ5fr9a5llE-zR4Z2QZ4Nu6z7Menj1fLL_P15efV8mI9V2WN41xrCsaYBjWSG1MCwVwShRUgA42RJaOGQ1FVmtQV10opbjgxrGiIrBvMSzrLXh51960LYuw7CEwxwSVCHCVidSS0kzux97aT_o9w0oqbgPMbIX20qgXBGEdaSiRNXTNd6qapaYEqYIVkYKBOWh_GakPTgVbQp5m0E9HpTW-3YuN-CUoY4cXhuW9GAe-uBwhRdDYoaFvZgxuCqDGlmNPU9yx79Q95f3MjtZHp_bY3LpVVB01xwXhZJepGa3EPlZaGzqrkEWNTfJLwdpKQmAi_40YOIYjV92__z17-nLKvT9gtyDZug2uHaF0fpiA7gsq7EDyYuxljJA4Wv52GOFhcjBZPaS9O_-cu6dbT9C-uEvad</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312160070</pqid></control><display><type>article</type><title>Comparison of strategies to detect epistasis from eQTL data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Kapur, Karen ; Schüpbach, Thierry ; Xenarios, Ioannis ; Kutalik, Zoltán ; Bergmann, Sven</creator><creatorcontrib>Kapur, Karen ; Schüpbach, Thierry ; Xenarios, Ioannis ; Kutalik, Zoltán ; Bergmann, Sven</creatorcontrib><description>Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028415</identifier><identifier>PMID: 22205949</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Annotations ; Bioinformatics ; Biological effects ; Biology ; Comparative analysis ; Computational Biology - methods ; Computer applications ; Epistasis ; Epistasis, Genetic - genetics ; False Positive Reactions ; Gene expression ; Genes ; Genetic aspects ; Genetic diversity ; Genetic effects ; Genetic Linkage - genetics ; Genetic variance ; Genetics ; Genome-wide association studies ; Genomes ; Genomics ; Haplotypes ; Humans ; Medical research ; Molecular Sequence Annotation ; Proteins ; Quantitative Trait Loci - genetics ; Saccharomyces cerevisiae - genetics ; Single-nucleotide polymorphism ; Statistical analysis ; Studies ; Yeast</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28415-e28415</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kapur et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kapur et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-dd3efffb0ba7ff6e217a2c1ce0febfa643f7e588d2987dccc7f72f45b2a9b1763</citedby><cites>FETCH-LOGICAL-c691t-dd3efffb0ba7ff6e217a2c1ce0febfa643f7e588d2987dccc7f72f45b2a9b1763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242756/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242756/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22205949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapur, Karen</creatorcontrib><creatorcontrib>Schüpbach, Thierry</creatorcontrib><creatorcontrib>Xenarios, Ioannis</creatorcontrib><creatorcontrib>Kutalik, Zoltán</creatorcontrib><creatorcontrib>Bergmann, Sven</creatorcontrib><title>Comparison of strategies to detect epistasis from eQTL data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects.</description><subject>Annotations</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Comparative analysis</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Epistasis</subject><subject>Epistasis, Genetic - genetics</subject><subject>False Positive Reactions</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic effects</subject><subject>Genetic Linkage - genetics</subject><subject>Genetic variance</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Medical research</subject><subject>Molecular Sequence Annotation</subject><subject>Proteins</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Single-nucleotide polymorphism</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLguLFjPlq0yIIy-DHwMCirt6GNDmZydA2s0kq-u_N7HSXqeyF5CLh5DnvyTl5s-w5RgtMOX63c4PvZbvYux4WCJGK4eJBdo5rSuYlQfThyfksexLCDqGCVmX5ODsjhKCiZvV59n7pur30Nrg-dyYP0csIGwshjy7XEEHFHPY2RBlsyI13XQ5fr9a5llE-zR4Z2QZ4Nu6z7Menj1fLL_P15efV8mI9V2WN41xrCsaYBjWSG1MCwVwShRUgA42RJaOGQ1FVmtQV10opbjgxrGiIrBvMSzrLXh51960LYuw7CEwxwSVCHCVidSS0kzux97aT_o9w0oqbgPMbIX20qgXBGEdaSiRNXTNd6qapaYEqYIVkYKBOWh_GakPTgVbQp5m0E9HpTW-3YuN-CUoY4cXhuW9GAe-uBwhRdDYoaFvZgxuCqDGlmNPU9yx79Q95f3MjtZHp_bY3LpVVB01xwXhZJepGa3EPlZaGzqrkEWNTfJLwdpKQmAi_40YOIYjV92__z17-nLKvT9gtyDZug2uHaF0fpiA7gsq7EDyYuxljJA4Wv52GOFhcjBZPaS9O_-cu6dbT9C-uEvad</recordid><startdate>20111219</startdate><enddate>20111219</enddate><creator>Kapur, Karen</creator><creator>Schüpbach, Thierry</creator><creator>Xenarios, Ioannis</creator><creator>Kutalik, Zoltán</creator><creator>Bergmann, Sven</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111219</creationdate><title>Comparison of strategies to detect epistasis from eQTL data</title><author>Kapur, Karen ; Schüpbach, Thierry ; Xenarios, Ioannis ; Kutalik, Zoltán ; Bergmann, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-dd3efffb0ba7ff6e217a2c1ce0febfa643f7e588d2987dccc7f72f45b2a9b1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annotations</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Comparative analysis</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Epistasis</topic><topic>Epistasis, Genetic - genetics</topic><topic>False Positive Reactions</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic effects</topic><topic>Genetic Linkage - genetics</topic><topic>Genetic variance</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Medical research</topic><topic>Molecular Sequence Annotation</topic><topic>Proteins</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Single-nucleotide polymorphism</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapur, Karen</creatorcontrib><creatorcontrib>Schüpbach, Thierry</creatorcontrib><creatorcontrib>Xenarios, Ioannis</creatorcontrib><creatorcontrib>Kutalik, Zoltán</creatorcontrib><creatorcontrib>Bergmann, Sven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapur, Karen</au><au>Schüpbach, Thierry</au><au>Xenarios, Ioannis</au><au>Kutalik, Zoltán</au><au>Bergmann, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of strategies to detect epistasis from eQTL data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-19</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28415</spage><epage>e28415</epage><pages>e28415-e28415</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22205949</pmid><doi>10.1371/journal.pone.0028415</doi><tpages>e28415</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e28415-e28415 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1312160070 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Annotations Bioinformatics Biological effects Biology Comparative analysis Computational Biology - methods Computer applications Epistasis Epistasis, Genetic - genetics False Positive Reactions Gene expression Genes Genetic aspects Genetic diversity Genetic effects Genetic Linkage - genetics Genetic variance Genetics Genome-wide association studies Genomes Genomics Haplotypes Humans Medical research Molecular Sequence Annotation Proteins Quantitative Trait Loci - genetics Saccharomyces cerevisiae - genetics Single-nucleotide polymorphism Statistical analysis Studies Yeast |
title | Comparison of strategies to detect epistasis from eQTL data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20strategies%20to%20detect%20epistasis%20from%20eQTL%20data&rft.jtitle=PloS%20one&rft.au=Kapur,%20Karen&rft.date=2011-12-19&rft.volume=6&rft.issue=12&rft.spage=e28415&rft.epage=e28415&rft.pages=e28415-e28415&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028415&rft_dat=%3Cgale_plos_%3EA476860064%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312160070&rft_id=info:pmid/22205949&rft_galeid=A476860064&rft_doaj_id=oai_doaj_org_article_4470daa0af994d6dbb93508e45a4efe9&rfr_iscdi=true |