Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes

MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. We hypothesized that miRs that figure pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-11, Vol.6 (11), p.e27417-e27417
Hauptverfasser: Fu, Ji-Dong, Rushing, Stephanie N, Lieu, Deborah K, Chan, Camie W, Kong, Chi-Wing, Geng, Lin, Wilson, Kitchener D, Chiamvimonvat, Nipavan, Boheler, Kenneth R, Wu, Joseph C, Keller, Gordon, Hajjar, Roger J, Li, Ronald A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e27417
container_issue 11
container_start_page e27417
container_title PloS one
container_volume 6
creator Fu, Ji-Dong
Rushing, Stephanie N
Lieu, Deborah K
Chan, Camie W
Kong, Chi-Wing
Geng, Lin
Wilson, Kitchener D
Chiamvimonvat, Nipavan
Boheler, Kenneth R
Wu, Joseph C
Keller, Gordon
Hajjar, Roger J
Li, Ronald A
description MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p0.05). By contrast, LV-miR-1 transduction did not bias the yield (p>0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to), I(Ks) and I(Kr), and decreased I(f) (p
doi_str_mv 10.1371/journal.pone.0027417
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1312157922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476862842</galeid><doaj_id>oai_doaj_org_article_c906e6f1799b400b8bf5c02dcd4e7ff2</doaj_id><sourcerecordid>A476862842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-1dbe7b159c6d5037cd4e19c16d7f05e02508766db1f5d0a8b914d5e1cf1b0123</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEoqXwBggsIYFYZLBzseMN0qjcRqqoVCq2luPLjCsnHmxnxLwFj4zTSasJ6gJ5Ecf-zn_s3-dk2UsEF6gk6MONG3zP7WLrerWAsCAVIo-yU0TLIscFLB8fzU-yZyHcQFiXDcZPs5OiQAjiqjzN_nwyIZpeROCdVQE4DTojvLv6vswR4L0EeUUpMD3YqT56IwbLPQhbJYw2gkfj-ltKD0kj_XALOh4Hf9hJapuh4z1QXev3rjcChKg6IJS1uVTe7JQEgntpXLd3Yh9VeJ490dwG9WL6nmXXXz5fn3_LLy6_rs6XF7kgNYk5kq0iLaqpwLKGJRGyUogKhCXRsFawqGFDMJYt0rWEvGkpqmStkNCohagoz7LXB9mtdYFNXgaGSlSgmtBiJFYHQjp-w7bedNzvmeOG3S44v2bcRyOsYoJCrLBGhNK2grBtWl0LWMjxUETrUevjlG1oOyXFaCW3M9H5Tm82bO12rCySaIOTwLtJwLtfgwqRdSaMLvJeuSEwCmuKS1qPqd78Qz58uYla83R-02uX0opRky0rghtcNNVILR6g0pAqFUmqO23S-izg_SwgMVH9jms-hMBWP67-n738OWffHrEbxW3cBGeHscjCHKwOYCrhELzS9x4jyMa2uXODjW3DprZJYa-O3-c-6K5Pyr-MTxSE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312157922</pqid></control><display><type>article</type><title>Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Fu, Ji-Dong ; Rushing, Stephanie N ; Lieu, Deborah K ; Chan, Camie W ; Kong, Chi-Wing ; Geng, Lin ; Wilson, Kitchener D ; Chiamvimonvat, Nipavan ; Boheler, Kenneth R ; Wu, Joseph C ; Keller, Gordon ; Hajjar, Roger J ; Li, Ronald A</creator><contributor>Rota, Marcello</contributor><creatorcontrib>Fu, Ji-Dong ; Rushing, Stephanie N ; Lieu, Deborah K ; Chan, Camie W ; Kong, Chi-Wing ; Geng, Lin ; Wilson, Kitchener D ; Chiamvimonvat, Nipavan ; Boheler, Kenneth R ; Wu, Joseph C ; Keller, Gordon ; Hajjar, Roger J ; Li, Ronald A ; Rota, Marcello</creatorcontrib><description>MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p&lt;0.05) and contractile protein expression without affecting their electrophysiological properties (p&gt;0.05). By contrast, LV-miR-1 transduction did not bias the yield (p&gt;0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to), I(Ks) and I(Kr), and decreased I(f) (p&lt;0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca(2+) transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0027417</identifier><identifier>PMID: 22110643</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aging ; Analysis ; Animals ; Biology ; Calcium ; Calcium - metabolism ; Cardiomyocytes ; Cell Differentiation ; Cell Line ; Consortia ; Differentiation ; Electrophysiological Phenomena - genetics ; Embryo cells ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Experiments ; Fetus - cytology ; Fetuses ; Genes ; Heart ; Heart cells ; Heart diseases ; Heart failure ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Humans ; Kinetics ; Maturation ; Medicine ; Mice ; MicroRNA ; MicroRNAs ; MicroRNAs - metabolism ; miRNA ; Morphogenesis ; Muscle contraction ; Mutation ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Myogenesis ; Pathogenesis ; Pluripotency ; Ribonucleic acid ; RNA ; Specifications ; Stem cell transplantation ; Stem cells ; Transcription ; Transcription factors ; Ventricle ; Ventricular Function - genetics</subject><ispartof>PloS one, 2011-11, Vol.6 (11), p.e27417-e27417</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Fu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Fu et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-1dbe7b159c6d5037cd4e19c16d7f05e02508766db1f5d0a8b914d5e1cf1b0123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217986/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217986/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22110643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rota, Marcello</contributor><creatorcontrib>Fu, Ji-Dong</creatorcontrib><creatorcontrib>Rushing, Stephanie N</creatorcontrib><creatorcontrib>Lieu, Deborah K</creatorcontrib><creatorcontrib>Chan, Camie W</creatorcontrib><creatorcontrib>Kong, Chi-Wing</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Wilson, Kitchener D</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><creatorcontrib>Boheler, Kenneth R</creatorcontrib><creatorcontrib>Wu, Joseph C</creatorcontrib><creatorcontrib>Keller, Gordon</creatorcontrib><creatorcontrib>Hajjar, Roger J</creatorcontrib><creatorcontrib>Li, Ronald A</creatorcontrib><title>Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p&lt;0.05) and contractile protein expression without affecting their electrophysiological properties (p&gt;0.05). By contrast, LV-miR-1 transduction did not bias the yield (p&gt;0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to), I(Ks) and I(Kr), and decreased I(f) (p&lt;0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca(2+) transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.</description><subject>Adult</subject><subject>Aging</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cardiomyocytes</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Consortia</subject><subject>Differentiation</subject><subject>Electrophysiological Phenomena - genetics</subject><subject>Embryo cells</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Experiments</subject><subject>Fetus - cytology</subject><subject>Fetuses</subject><subject>Genes</subject><subject>Heart</subject><subject>Heart cells</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Maturation</subject><subject>Medicine</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Morphogenesis</subject><subject>Muscle contraction</subject><subject>Mutation</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myogenesis</subject><subject>Pathogenesis</subject><subject>Pluripotency</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Specifications</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Ventricle</subject><subject>Ventricular Function - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEoqXwBggsIYFYZLBzseMN0qjcRqqoVCq2luPLjCsnHmxnxLwFj4zTSasJ6gJ5Ecf-zn_s3-dk2UsEF6gk6MONG3zP7WLrerWAsCAVIo-yU0TLIscFLB8fzU-yZyHcQFiXDcZPs5OiQAjiqjzN_nwyIZpeROCdVQE4DTojvLv6vswR4L0EeUUpMD3YqT56IwbLPQhbJYw2gkfj-ltKD0kj_XALOh4Hf9hJapuh4z1QXev3rjcChKg6IJS1uVTe7JQEgntpXLd3Yh9VeJ490dwG9WL6nmXXXz5fn3_LLy6_rs6XF7kgNYk5kq0iLaqpwLKGJRGyUogKhCXRsFawqGFDMJYt0rWEvGkpqmStkNCohagoz7LXB9mtdYFNXgaGSlSgmtBiJFYHQjp-w7bedNzvmeOG3S44v2bcRyOsYoJCrLBGhNK2grBtWl0LWMjxUETrUevjlG1oOyXFaCW3M9H5Tm82bO12rCySaIOTwLtJwLtfgwqRdSaMLvJeuSEwCmuKS1qPqd78Qz58uYla83R-02uX0opRky0rghtcNNVILR6g0pAqFUmqO23S-izg_SwgMVH9jms-hMBWP67-n738OWffHrEbxW3cBGeHscjCHKwOYCrhELzS9x4jyMa2uXODjW3DprZJYa-O3-c-6K5Pyr-MTxSE</recordid><startdate>20111116</startdate><enddate>20111116</enddate><creator>Fu, Ji-Dong</creator><creator>Rushing, Stephanie N</creator><creator>Lieu, Deborah K</creator><creator>Chan, Camie W</creator><creator>Kong, Chi-Wing</creator><creator>Geng, Lin</creator><creator>Wilson, Kitchener D</creator><creator>Chiamvimonvat, Nipavan</creator><creator>Boheler, Kenneth R</creator><creator>Wu, Joseph C</creator><creator>Keller, Gordon</creator><creator>Hajjar, Roger J</creator><creator>Li, Ronald A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111116</creationdate><title>Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes</title><author>Fu, Ji-Dong ; Rushing, Stephanie N ; Lieu, Deborah K ; Chan, Camie W ; Kong, Chi-Wing ; Geng, Lin ; Wilson, Kitchener D ; Chiamvimonvat, Nipavan ; Boheler, Kenneth R ; Wu, Joseph C ; Keller, Gordon ; Hajjar, Roger J ; Li, Ronald A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-1dbe7b159c6d5037cd4e19c16d7f05e02508766db1f5d0a8b914d5e1cf1b0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Aging</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cardiomyocytes</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Consortia</topic><topic>Differentiation</topic><topic>Electrophysiological Phenomena - genetics</topic><topic>Embryo cells</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Experiments</topic><topic>Fetus - cytology</topic><topic>Fetuses</topic><topic>Genes</topic><topic>Heart</topic><topic>Heart cells</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Maturation</topic><topic>Medicine</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Morphogenesis</topic><topic>Muscle contraction</topic><topic>Mutation</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myogenesis</topic><topic>Pathogenesis</topic><topic>Pluripotency</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Specifications</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Ventricle</topic><topic>Ventricular Function - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Ji-Dong</creatorcontrib><creatorcontrib>Rushing, Stephanie N</creatorcontrib><creatorcontrib>Lieu, Deborah K</creatorcontrib><creatorcontrib>Chan, Camie W</creatorcontrib><creatorcontrib>Kong, Chi-Wing</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Wilson, Kitchener D</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><creatorcontrib>Boheler, Kenneth R</creatorcontrib><creatorcontrib>Wu, Joseph C</creatorcontrib><creatorcontrib>Keller, Gordon</creatorcontrib><creatorcontrib>Hajjar, Roger J</creatorcontrib><creatorcontrib>Li, Ronald A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Ji-Dong</au><au>Rushing, Stephanie N</au><au>Lieu, Deborah K</au><au>Chan, Camie W</au><au>Kong, Chi-Wing</au><au>Geng, Lin</au><au>Wilson, Kitchener D</au><au>Chiamvimonvat, Nipavan</au><au>Boheler, Kenneth R</au><au>Wu, Joseph C</au><au>Keller, Gordon</au><au>Hajjar, Roger J</au><au>Li, Ronald A</au><au>Rota, Marcello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-11-16</date><risdate>2011</risdate><volume>6</volume><issue>11</issue><spage>e27417</spage><epage>e27417</epage><pages>e27417-e27417</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive. We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p&lt;0.05) and contractile protein expression without affecting their electrophysiological properties (p&gt;0.05). By contrast, LV-miR-1 transduction did not bias the yield (p&gt;0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to), I(Ks) and I(Kr), and decreased I(f) (p&lt;0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca(2+) transient amplitude and kinetics. Molecular pathway analyses were performed for further insights. We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22110643</pmid><doi>10.1371/journal.pone.0027417</doi><tpages>e27417</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-11, Vol.6 (11), p.e27417-e27417
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1312157922
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adult
Aging
Analysis
Animals
Biology
Calcium
Calcium - metabolism
Cardiomyocytes
Cell Differentiation
Cell Line
Consortia
Differentiation
Electrophysiological Phenomena - genetics
Embryo cells
Embryonic stem cells
Embryonic Stem Cells - cytology
Experiments
Fetus - cytology
Fetuses
Genes
Heart
Heart cells
Heart diseases
Heart failure
Heart Ventricles - cytology
Heart Ventricles - metabolism
Humans
Kinetics
Maturation
Medicine
Mice
MicroRNA
MicroRNAs
MicroRNAs - metabolism
miRNA
Morphogenesis
Muscle contraction
Mutation
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Myogenesis
Pathogenesis
Pluripotency
Ribonucleic acid
RNA
Specifications
Stem cell transplantation
Stem cells
Transcription
Transcription factors
Ventricle
Ventricular Function - genetics
title Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20roles%20of%20microRNA-1%20and%20-499%20in%20ventricular%20specification%20and%20functional%20maturation%20of%20human%20embryonic%20stem%20cell-derived%20cardiomyocytes&rft.jtitle=PloS%20one&rft.au=Fu,%20Ji-Dong&rft.date=2011-11-16&rft.volume=6&rft.issue=11&rft.spage=e27417&rft.epage=e27417&rft.pages=e27417-e27417&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0027417&rft_dat=%3Cgale_plos_%3EA476862842%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312157922&rft_id=info:pmid/22110643&rft_galeid=A476862842&rft_doaj_id=oai_doaj_org_article_c906e6f1799b400b8bf5c02dcd4e7ff2&rfr_iscdi=true