LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling

LIV-1, a zinc transporter, is an effector molecule downstream from soluble growth factors. This protein has been shown to promote epithelial-to-mesenchymal transition (EMT) in human pancreatic, breast, and prostate cancer cells. Despite the implication of LIV-1 in cancer growth and metastasis, there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-11, Vol.6 (11), p.e27720-e27720
Hauptverfasser: Lue, Hui-Wen, Yang, Xiaojian, Wang, Ruoxiang, Qian, Weiping, Xu, Roy Z H, Lyles, Robert, Osunkoya, Adeboye O, Zhou, Binhua P, Vessella, Robert L, Zayzafoon, Majd, Liu, Zhi-Ren, Zhau, Haiyen E, Chung, Leland W K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LIV-1, a zinc transporter, is an effector molecule downstream from soluble growth factors. This protein has been shown to promote epithelial-to-mesenchymal transition (EMT) in human pancreatic, breast, and prostate cancer cells. Despite the implication of LIV-1 in cancer growth and metastasis, there has been no study to determine the role of LIV-1 in prostate cancer progression. Moreover, there was no clear delineation of the molecular mechanism underlying LIV-1 function in cancer cells. In the present communication, we found increased LIV-1 expression in benign, PIN, primary and bone metastatic human prostate cancer. We characterized the mechanism by which LIV-1 drives human prostate cancer EMT in an androgen-refractory prostate cancer cells (ARCaP) prostate cancer bone metastasis model. LIV-1, when overexpressed in ARCaP(E) (derivative cells of ARCaP with epithelial phenotype) cells, promoted EMT irreversibly. LIV-1 overexpressed ARCaP(E) cells had elevated levels of HB-EGF and matrix metalloproteinase (MMP) 2 and MMP 9 proteolytic enzyme activities, without affecting intracellular zinc concentration. The activation of MMPs resulted in the shedding of heparin binding-epidermal growth factor (HB-EGF) from ARCaP(E) cells that elicited constitutive epidermal growth factor receptor (EGFR) phosphorylation and its downstream extracellular signal regulated kinase (ERK) signaling. These results suggest that LIV-1 is involved in prostate cancer progression as an intracellular target of growth factor receptor signaling which promoted EMT and cancer metastasis. LIV-1 could be an attractive therapeutic target for the eradication of pre-existing human prostate cancer and bone and soft tissue metastases.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0027720