Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake
Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear recept...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-12, Vol.6 (12), p.e28290-e28290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e28290 |
---|---|
container_issue | 12 |
container_start_page | e28290 |
container_title | PloS one |
container_volume | 6 |
creator | Tadaishi, Miki Miura, Shinji Kai, Yuko Kano, Yutaka Oishi, Yuichi Ezaki, Osamu |
description | Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity.
Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.
Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan. |
doi_str_mv | 10.1371/journal.pone.0028290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1311368832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36213eea8a7948a9b5c7b845caf54ef5</doaj_id><sourcerecordid>911948926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiNERUvhDRBYYsGmGXyJHWeDhEbQVqoEErC2TpyTwTOZONhJ1dnzQrwIz4TLpKMWsbBs-XznPxf9WfaC0QUTJXu79lPooVsMvscFpVzzij7KTlgleK44FY_vvY-zpzGuKZVCK_UkO-aclUWp5Un288sGOxyhI9sp2g7zOKB1rbMEb4aAMTrfE9-Sz-fLnP3-lddnBPoUw2BdxDwRqX5010hc9K0P2zPiehsQIsYDRiwMYN24S7kNGRA2xN_sVtiTaRhhg8-yoxa6iM_n-zT79vHD1-VFfvXp_HL5_iq3kssxR-BKUttqWadjeVNqXlPGam2BoyiYbLWgTcMstEKBUlIzjcCqIuG8BHGavdrrDp2PZl5gNEwwJpTWgifick80HtZmCG4LYWc8OPP3w4eVgTC6tCgjFGcCETSUVaGhqqUta13IVFwW2Mqk9W6uNtVbbCz2Y4DugejDSO--m5W_NqmPgiuWBN7MAsH_mDCOZuuixa6DHv0UTcXSaLriKpGv_yH_P1yxp2zwMQZsD70wam49dZdlbj1lZk-ltJf35zgk3ZlI_AFdSs1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311368832</pqid></control><display><type>article</type><title>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tadaishi, Miki ; Miura, Shinji ; Kai, Yuko ; Kano, Yutaka ; Oishi, Yuichi ; Ezaki, Osamu</creator><creatorcontrib>Tadaishi, Miki ; Miura, Shinji ; Kai, Yuko ; Kano, Yutaka ; Oishi, Yuichi ; Ezaki, Osamu</creatorcontrib><description>Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity.
Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.
Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028290</identifier><identifier>PMID: 22174785</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Angiogenesis ; Animals ; Biology ; Biosynthesis ; Body Composition - physiology ; Capillaries ; Carbohydrate Metabolism ; Cardiac output ; Cardiovascular disease ; Deoxyribonucleic acid ; Dietary fiber ; DNA ; Endurance ; Exercise ; Fasting - physiology ; Fatty acids ; Gene Expression Regulation ; Glycogen ; Glycogen - metabolism ; Heart ; Heart diseases ; Humans ; Isoforms ; Laboratory animals ; Lactic Acid - blood ; Life span ; Lipid peroxidation ; Male ; Maximum oxygen consumption ; Medicine ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria ; Mitochondria - metabolism ; Mortality ; mRNA ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myocardium - metabolism ; Nuclear fuels ; Nutrition ; Organ Specificity ; Organelle Size ; Oxidation ; Oxygen ; Oxygen Consumption ; Oxygen uptake ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Physical Conditioning, Animal ; Physical training ; Protein Isoforms - metabolism ; Proteins ; Rodents ; Science ; Skeletal muscle ; Trans-Activators - metabolism ; Transcription Factors ; Transgenic animals ; Transgenic mice</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28290-e28290</ispartof><rights>2011 Tadaishi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Tadaishi et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</citedby><cites>FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234261/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234261/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22174785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tadaishi, Miki</creatorcontrib><creatorcontrib>Miura, Shinji</creatorcontrib><creatorcontrib>Kai, Yuko</creatorcontrib><creatorcontrib>Kano, Yutaka</creatorcontrib><creatorcontrib>Oishi, Yuichi</creatorcontrib><creatorcontrib>Ezaki, Osamu</creatorcontrib><title>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity.
Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.
Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.</description><subject>Amino acids</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Body Composition - physiology</subject><subject>Capillaries</subject><subject>Carbohydrate Metabolism</subject><subject>Cardiac output</subject><subject>Cardiovascular disease</subject><subject>Deoxyribonucleic acid</subject><subject>Dietary fiber</subject><subject>DNA</subject><subject>Endurance</subject><subject>Exercise</subject><subject>Fasting - physiology</subject><subject>Fatty acids</subject><subject>Gene Expression Regulation</subject><subject>Glycogen</subject><subject>Glycogen - metabolism</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Laboratory animals</subject><subject>Lactic Acid - blood</subject><subject>Life span</subject><subject>Lipid peroxidation</subject><subject>Male</subject><subject>Maximum oxygen consumption</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mortality</subject><subject>mRNA</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myocardium - metabolism</subject><subject>Nuclear fuels</subject><subject>Nutrition</subject><subject>Organ Specificity</subject><subject>Organelle Size</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Oxygen uptake</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Physical Conditioning, Animal</subject><subject>Physical training</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Science</subject><subject>Skeletal muscle</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiNERUvhDRBYYsGmGXyJHWeDhEbQVqoEErC2TpyTwTOZONhJ1dnzQrwIz4TLpKMWsbBs-XznPxf9WfaC0QUTJXu79lPooVsMvscFpVzzij7KTlgleK44FY_vvY-zpzGuKZVCK_UkO-aclUWp5Un288sGOxyhI9sp2g7zOKB1rbMEb4aAMTrfE9-Sz-fLnP3-lddnBPoUw2BdxDwRqX5010hc9K0P2zPiehsQIsYDRiwMYN24S7kNGRA2xN_sVtiTaRhhg8-yoxa6iM_n-zT79vHD1-VFfvXp_HL5_iq3kssxR-BKUttqWadjeVNqXlPGam2BoyiYbLWgTcMstEKBUlIzjcCqIuG8BHGavdrrDp2PZl5gNEwwJpTWgifick80HtZmCG4LYWc8OPP3w4eVgTC6tCgjFGcCETSUVaGhqqUta13IVFwW2Mqk9W6uNtVbbCz2Y4DugejDSO--m5W_NqmPgiuWBN7MAsH_mDCOZuuixa6DHv0UTcXSaLriKpGv_yH_P1yxp2zwMQZsD70wam49dZdlbj1lZk-ltJf35zgk3ZlI_AFdSs1I</recordid><startdate>20111208</startdate><enddate>20111208</enddate><creator>Tadaishi, Miki</creator><creator>Miura, Shinji</creator><creator>Kai, Yuko</creator><creator>Kano, Yutaka</creator><creator>Oishi, Yuichi</creator><creator>Ezaki, Osamu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111208</creationdate><title>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</title><author>Tadaishi, Miki ; Miura, Shinji ; Kai, Yuko ; Kano, Yutaka ; Oishi, Yuichi ; Ezaki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Body Composition - physiology</topic><topic>Capillaries</topic><topic>Carbohydrate Metabolism</topic><topic>Cardiac output</topic><topic>Cardiovascular disease</topic><topic>Deoxyribonucleic acid</topic><topic>Dietary fiber</topic><topic>DNA</topic><topic>Endurance</topic><topic>Exercise</topic><topic>Fasting - physiology</topic><topic>Fatty acids</topic><topic>Gene Expression Regulation</topic><topic>Glycogen</topic><topic>Glycogen - metabolism</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Laboratory animals</topic><topic>Lactic Acid - blood</topic><topic>Life span</topic><topic>Lipid peroxidation</topic><topic>Male</topic><topic>Maximum oxygen consumption</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mortality</topic><topic>mRNA</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myocardium - metabolism</topic><topic>Nuclear fuels</topic><topic>Nutrition</topic><topic>Organ Specificity</topic><topic>Organelle Size</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Oxygen uptake</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Physical Conditioning, Animal</topic><topic>Physical training</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Science</topic><topic>Skeletal muscle</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadaishi, Miki</creatorcontrib><creatorcontrib>Miura, Shinji</creatorcontrib><creatorcontrib>Kai, Yuko</creatorcontrib><creatorcontrib>Kano, Yutaka</creatorcontrib><creatorcontrib>Oishi, Yuichi</creatorcontrib><creatorcontrib>Ezaki, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadaishi, Miki</au><au>Miura, Shinji</au><au>Kai, Yuko</au><au>Kano, Yutaka</au><au>Oishi, Yuichi</au><au>Ezaki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-08</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28290</spage><epage>e28290</epage><pages>e28290-e28290</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity.
Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice.
Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22174785</pmid><doi>10.1371/journal.pone.0028290</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e28290-e28290 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1311368832 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino acids Angiogenesis Animals Biology Biosynthesis Body Composition - physiology Capillaries Carbohydrate Metabolism Cardiac output Cardiovascular disease Deoxyribonucleic acid Dietary fiber DNA Endurance Exercise Fasting - physiology Fatty acids Gene Expression Regulation Glycogen Glycogen - metabolism Heart Heart diseases Humans Isoforms Laboratory animals Lactic Acid - blood Life span Lipid peroxidation Male Maximum oxygen consumption Medicine Metabolism Mice Mice, Inbred C57BL Mice, Transgenic Mitochondria Mitochondria - metabolism Mortality mRNA Muscle, Skeletal - metabolism Muscles Musculoskeletal system Myocardium - metabolism Nuclear fuels Nutrition Organ Specificity Organelle Size Oxidation Oxygen Oxygen Consumption Oxygen uptake Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Physical Conditioning, Animal Physical training Protein Isoforms - metabolism Proteins Rodents Science Skeletal muscle Trans-Activators - metabolism Transcription Factors Transgenic animals Transgenic mice |
title | Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletal%20muscle-specific%20expression%20of%20PGC-1%CE%B1-b,%20an%20exercise-responsive%20isoform,%20increases%20exercise%20capacity%20and%20peak%20oxygen%20uptake&rft.jtitle=PloS%20one&rft.au=Tadaishi,%20Miki&rft.date=2011-12-08&rft.volume=6&rft.issue=12&rft.spage=e28290&rft.epage=e28290&rft.pages=e28290-e28290&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028290&rft_dat=%3Cproquest_plos_%3E911948926%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311368832&rft_id=info:pmid/22174785&rft_doaj_id=oai_doaj_org_article_36213eea8a7948a9b5c7b845caf54ef5&rfr_iscdi=true |