Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake

Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear recept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-12, Vol.6 (12), p.e28290-e28290
Hauptverfasser: Tadaishi, Miki, Miura, Shinji, Kai, Yuko, Kano, Yutaka, Oishi, Yuichi, Ezaki, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e28290
container_issue 12
container_start_page e28290
container_title PloS one
container_volume 6
creator Tadaishi, Miki
Miura, Shinji
Kai, Yuko
Kano, Yutaka
Oishi, Yuichi
Ezaki, Osamu
description Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity. Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice. Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.
doi_str_mv 10.1371/journal.pone.0028290
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1311368832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36213eea8a7948a9b5c7b845caf54ef5</doaj_id><sourcerecordid>911948926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiNERUvhDRBYYsGmGXyJHWeDhEbQVqoEErC2TpyTwTOZONhJ1dnzQrwIz4TLpKMWsbBs-XznPxf9WfaC0QUTJXu79lPooVsMvscFpVzzij7KTlgleK44FY_vvY-zpzGuKZVCK_UkO-aclUWp5Un288sGOxyhI9sp2g7zOKB1rbMEb4aAMTrfE9-Sz-fLnP3-lddnBPoUw2BdxDwRqX5010hc9K0P2zPiehsQIsYDRiwMYN24S7kNGRA2xN_sVtiTaRhhg8-yoxa6iM_n-zT79vHD1-VFfvXp_HL5_iq3kssxR-BKUttqWadjeVNqXlPGam2BoyiYbLWgTcMstEKBUlIzjcCqIuG8BHGavdrrDp2PZl5gNEwwJpTWgifick80HtZmCG4LYWc8OPP3w4eVgTC6tCgjFGcCETSUVaGhqqUta13IVFwW2Mqk9W6uNtVbbCz2Y4DugejDSO--m5W_NqmPgiuWBN7MAsH_mDCOZuuixa6DHv0UTcXSaLriKpGv_yH_P1yxp2zwMQZsD70wam49dZdlbj1lZk-ltJf35zgk3ZlI_AFdSs1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311368832</pqid></control><display><type>article</type><title>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tadaishi, Miki ; Miura, Shinji ; Kai, Yuko ; Kano, Yutaka ; Oishi, Yuichi ; Ezaki, Osamu</creator><creatorcontrib>Tadaishi, Miki ; Miura, Shinji ; Kai, Yuko ; Kano, Yutaka ; Oishi, Yuichi ; Ezaki, Osamu</creatorcontrib><description>Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity. Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice. Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0028290</identifier><identifier>PMID: 22174785</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Angiogenesis ; Animals ; Biology ; Biosynthesis ; Body Composition - physiology ; Capillaries ; Carbohydrate Metabolism ; Cardiac output ; Cardiovascular disease ; Deoxyribonucleic acid ; Dietary fiber ; DNA ; Endurance ; Exercise ; Fasting - physiology ; Fatty acids ; Gene Expression Regulation ; Glycogen ; Glycogen - metabolism ; Heart ; Heart diseases ; Humans ; Isoforms ; Laboratory animals ; Lactic Acid - blood ; Life span ; Lipid peroxidation ; Male ; Maximum oxygen consumption ; Medicine ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria ; Mitochondria - metabolism ; Mortality ; mRNA ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myocardium - metabolism ; Nuclear fuels ; Nutrition ; Organ Specificity ; Organelle Size ; Oxidation ; Oxygen ; Oxygen Consumption ; Oxygen uptake ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Physical Conditioning, Animal ; Physical training ; Protein Isoforms - metabolism ; Proteins ; Rodents ; Science ; Skeletal muscle ; Trans-Activators - metabolism ; Transcription Factors ; Transgenic animals ; Transgenic mice</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e28290-e28290</ispartof><rights>2011 Tadaishi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Tadaishi et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</citedby><cites>FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234261/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234261/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22174785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tadaishi, Miki</creatorcontrib><creatorcontrib>Miura, Shinji</creatorcontrib><creatorcontrib>Kai, Yuko</creatorcontrib><creatorcontrib>Kano, Yutaka</creatorcontrib><creatorcontrib>Oishi, Yuichi</creatorcontrib><creatorcontrib>Ezaki, Osamu</creatorcontrib><title>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity. Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice. Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.</description><subject>Amino acids</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Body Composition - physiology</subject><subject>Capillaries</subject><subject>Carbohydrate Metabolism</subject><subject>Cardiac output</subject><subject>Cardiovascular disease</subject><subject>Deoxyribonucleic acid</subject><subject>Dietary fiber</subject><subject>DNA</subject><subject>Endurance</subject><subject>Exercise</subject><subject>Fasting - physiology</subject><subject>Fatty acids</subject><subject>Gene Expression Regulation</subject><subject>Glycogen</subject><subject>Glycogen - metabolism</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Laboratory animals</subject><subject>Lactic Acid - blood</subject><subject>Life span</subject><subject>Lipid peroxidation</subject><subject>Male</subject><subject>Maximum oxygen consumption</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mortality</subject><subject>mRNA</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myocardium - metabolism</subject><subject>Nuclear fuels</subject><subject>Nutrition</subject><subject>Organ Specificity</subject><subject>Organelle Size</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen Consumption</subject><subject>Oxygen uptake</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Physical Conditioning, Animal</subject><subject>Physical training</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Science</subject><subject>Skeletal muscle</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiNERUvhDRBYYsGmGXyJHWeDhEbQVqoEErC2TpyTwTOZONhJ1dnzQrwIz4TLpKMWsbBs-XznPxf9WfaC0QUTJXu79lPooVsMvscFpVzzij7KTlgleK44FY_vvY-zpzGuKZVCK_UkO-aclUWp5Un288sGOxyhI9sp2g7zOKB1rbMEb4aAMTrfE9-Sz-fLnP3-lddnBPoUw2BdxDwRqX5010hc9K0P2zPiehsQIsYDRiwMYN24S7kNGRA2xN_sVtiTaRhhg8-yoxa6iM_n-zT79vHD1-VFfvXp_HL5_iq3kssxR-BKUttqWadjeVNqXlPGam2BoyiYbLWgTcMstEKBUlIzjcCqIuG8BHGavdrrDp2PZl5gNEwwJpTWgifick80HtZmCG4LYWc8OPP3w4eVgTC6tCgjFGcCETSUVaGhqqUta13IVFwW2Mqk9W6uNtVbbCz2Y4DugejDSO--m5W_NqmPgiuWBN7MAsH_mDCOZuuixa6DHv0UTcXSaLriKpGv_yH_P1yxp2zwMQZsD70wam49dZdlbj1lZk-ltJf35zgk3ZlI_AFdSs1I</recordid><startdate>20111208</startdate><enddate>20111208</enddate><creator>Tadaishi, Miki</creator><creator>Miura, Shinji</creator><creator>Kai, Yuko</creator><creator>Kano, Yutaka</creator><creator>Oishi, Yuichi</creator><creator>Ezaki, Osamu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111208</creationdate><title>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</title><author>Tadaishi, Miki ; Miura, Shinji ; Kai, Yuko ; Kano, Yutaka ; Oishi, Yuichi ; Ezaki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-ea2650cf85bf85c2d782b011b8ca2e3415f830dd1caf36a665818ea194f8527a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Body Composition - physiology</topic><topic>Capillaries</topic><topic>Carbohydrate Metabolism</topic><topic>Cardiac output</topic><topic>Cardiovascular disease</topic><topic>Deoxyribonucleic acid</topic><topic>Dietary fiber</topic><topic>DNA</topic><topic>Endurance</topic><topic>Exercise</topic><topic>Fasting - physiology</topic><topic>Fatty acids</topic><topic>Gene Expression Regulation</topic><topic>Glycogen</topic><topic>Glycogen - metabolism</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Laboratory animals</topic><topic>Lactic Acid - blood</topic><topic>Life span</topic><topic>Lipid peroxidation</topic><topic>Male</topic><topic>Maximum oxygen consumption</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mortality</topic><topic>mRNA</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myocardium - metabolism</topic><topic>Nuclear fuels</topic><topic>Nutrition</topic><topic>Organ Specificity</topic><topic>Organelle Size</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen Consumption</topic><topic>Oxygen uptake</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Physical Conditioning, Animal</topic><topic>Physical training</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Science</topic><topic>Skeletal muscle</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadaishi, Miki</creatorcontrib><creatorcontrib>Miura, Shinji</creatorcontrib><creatorcontrib>Kai, Yuko</creatorcontrib><creatorcontrib>Kano, Yutaka</creatorcontrib><creatorcontrib>Oishi, Yuichi</creatorcontrib><creatorcontrib>Ezaki, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadaishi, Miki</au><au>Miura, Shinji</au><au>Kai, Yuko</au><au>Kano, Yutaka</au><au>Oishi, Yuichi</au><au>Ezaki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-08</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e28290</spage><epage>e28290</epage><pages>e28290-e28290</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Maximal oxygen uptake (VO(2max)) predicts mortality and is associated with endurance performance. Trained subjects have a high VO(2max) due to a high cardiac output and high metabolic capacity of skeletal muscles. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training increases PGC-1α in skeletal muscle, PGC-1α-mediated changes may contribute to the improvement of exercise capacity and VO(2max). There are three isoforms of PGC-1α mRNA. PGC-1α-b protein, whose amino terminus is different from PGC-1α-a protein, is a predominant PGC-1α isoform in response to exercise. We investigated whether alterations of skeletal muscle metabolism by overexpression of PGC-1α-b in skeletal muscle, but not heart, would increase VO(2max) and exercise capacity. Transgenic mice showed overexpression of PGC-1α-b protein in skeletal muscle but not in heart. Overexpression of PGC-1α-b promoted mitochondrial biogenesis 4-fold, increased the expression of fatty acid transporters, enhanced angiogenesis in skeletal muscle 1.4 to 2.7-fold, and promoted exercise capacity (expressed by maximum speed) by 35% and peak oxygen uptake by 20%. Across a broad range of either the absolute exercise intensity, or the same relative exercise intensities, lipid oxidation was always higher in the transgenic mice than wild-type littermates, suggesting that lipid is the predominant fuel source for exercise in the transgenic mice. However, muscle glycogen usage during exercise was absent in the transgenic mice. Increased mitochondrial biogenesis, capillaries, and fatty acid transporters in skeletal muscles may contribute to improved exercise capacity via an increase in fatty acid utilization. Increases in PGC-1α-b protein or function might be a useful strategy for sedentary subjects to perform exercise efficiently, which would lead to prevention of life-style related diseases and increased lifespan.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22174785</pmid><doi>10.1371/journal.pone.0028290</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-12, Vol.6 (12), p.e28290-e28290
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1311368832
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acids
Angiogenesis
Animals
Biology
Biosynthesis
Body Composition - physiology
Capillaries
Carbohydrate Metabolism
Cardiac output
Cardiovascular disease
Deoxyribonucleic acid
Dietary fiber
DNA
Endurance
Exercise
Fasting - physiology
Fatty acids
Gene Expression Regulation
Glycogen
Glycogen - metabolism
Heart
Heart diseases
Humans
Isoforms
Laboratory animals
Lactic Acid - blood
Life span
Lipid peroxidation
Male
Maximum oxygen consumption
Medicine
Metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitochondria
Mitochondria - metabolism
Mortality
mRNA
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Myocardium - metabolism
Nuclear fuels
Nutrition
Organ Specificity
Organelle Size
Oxidation
Oxygen
Oxygen Consumption
Oxygen uptake
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Physical Conditioning, Animal
Physical training
Protein Isoforms - metabolism
Proteins
Rodents
Science
Skeletal muscle
Trans-Activators - metabolism
Transcription Factors
Transgenic animals
Transgenic mice
title Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletal%20muscle-specific%20expression%20of%20PGC-1%CE%B1-b,%20an%20exercise-responsive%20isoform,%20increases%20exercise%20capacity%20and%20peak%20oxygen%20uptake&rft.jtitle=PloS%20one&rft.au=Tadaishi,%20Miki&rft.date=2011-12-08&rft.volume=6&rft.issue=12&rft.spage=e28290&rft.epage=e28290&rft.pages=e28290-e28290&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0028290&rft_dat=%3Cproquest_plos_%3E911948926%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311368832&rft_id=info:pmid/22174785&rft_doaj_id=oai_doaj_org_article_36213eea8a7948a9b5c7b845caf54ef5&rfr_iscdi=true