A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth
Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-pr...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-12, Vol.6 (12), p.e29382-e29382 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e29382 |
---|---|
container_issue | 12 |
container_start_page | e29382 |
container_title | PloS one |
container_volume | 6 |
creator | Schwachtje, Jens Karojet, Silke Thormählen, Ina Bernholz, Carolin Kunz, Sabine Brouwer, Stephan Schwochow, Melanie Köhl, Karin van Dongen, Joost T |
description | Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion. |
doi_str_mv | 10.1371/journal.pone.0029382 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1311206884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476858064</galeid><doaj_id>oai_doaj_org_article_f41ee920f19c4083816dac441a1343a3</doaj_id><sourcerecordid>A476858064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-9c2b24672a46a005f53222a6702b57b78baedcf2f512796a3596c4e63b8a6b223</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDguLDjLlN2r4Iw-JlYGHB22s4TdNp1kxTk3TX9Qv4tU2d7jKVfZA8JCS_8z-3nCx7SvCSsJy8uXCD78Aue9fpJca0ZAW9lx2TktGFoJjdPzgfZY9CuMB4xQohHmZHlFIiqMiPs99r1EEcPFh7jSAEpwxEXSPfml-uAhW1N8MOuQatPVSmdn0wAcUWrIEOkOnqQemAAIUI_hKicd3Cmu8aRQ9dUN704xVY5HVIkQaNrlpjNeq927loui3aencV28fZgwZs0E-m_ST7-v7dl9OPi7PzD5vT9dlCiZLERaloRbnIKXABKZ9mxVIuIHJMq1Ve5UUFulYNbVaE5qUAtiqF4lqwqgBRUcpOsud73d66IKcaBkkYIRSLouCJ2OyJ2sGF7L3Zgb-WDoz8e-H8VoKPRlktG060LiluSKk4LlhBRA2KcwKEcQYsab2dvA3VLgWmu1QWOxOdv3SmlVt3KRnleepPEng1CXj3Y9Ahyp0JSlsLnXZDkCXhtCwKPIb94h_y7uQmagspftM1LrlVo6Zc81wUqwKLkVreQaVV651R6b81qYVzg9czg8RE_TNuYQhBbj5_-n_2_NucfXnAthpsbIOzw_inwhzke1B5F4LXzW2NCZbjuNxUQ47jIqdxSWbPDvtza3QzH-wPDuoSPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311206884</pqid></control><display><type>article</type><title>A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth</title><source>PLoS</source><source>MEDLINE</source><source>PubMed Central (Open Access)</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>Directory of Open Access Journals (Open Access)</source><creator>Schwachtje, Jens ; Karojet, Silke ; Thormählen, Ina ; Bernholz, Carolin ; Kunz, Sabine ; Brouwer, Stephan ; Schwochow, Melanie ; Köhl, Karin ; van Dongen, Joost T</creator><contributor>Laine, Anna-Liisa</contributor><creatorcontrib>Schwachtje, Jens ; Karojet, Silke ; Thormählen, Ina ; Bernholz, Carolin ; Kunz, Sabine ; Brouwer, Stephan ; Schwochow, Melanie ; Köhl, Karin ; van Dongen, Joost T ; Laine, Anna-Liisa</creatorcontrib><description>Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0029382</identifier><identifier>PMID: 22216267</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - microbiology ; Arabidopsis thaliana ; Bacteria ; Biology ; Carbohydrates ; Cell walls ; DNA microarrays ; Enzymes ; Gene expression ; Gene Expression Profiling ; Genes ; Genes, Plant ; Genetic aspects ; Genomes ; Growth ; Growth conditions ; Host plants ; Inoculation ; Metabolism ; Molecular modelling ; Nitrogen ; Physiological aspects ; Physiology ; Plant genetics ; Plant growth ; Plant Roots - microbiology ; Promotion ; Pseudomonas ; Pseudomonas - physiology ; Pseudomonas fluorescens ; Roots ; Shoots ; Sucrose ; Sugar ; Transcription ; Transcription (Genetics) ; Transcription factors ; Transcription, Genetic</subject><ispartof>PloS one, 2011-12, Vol.6 (12), p.e29382-e29382</ispartof><rights>2011 Schwachtje et al.</rights><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Schwachtje et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Schwachtje et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-9c2b24672a46a005f53222a6702b57b78baedcf2f512796a3596c4e63b8a6b223</citedby><cites>FETCH-LOGICAL-c691t-9c2b24672a46a005f53222a6702b57b78baedcf2f512796a3596c4e63b8a6b223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247267/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247267/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22216267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Laine, Anna-Liisa</contributor><creatorcontrib>Schwachtje, Jens</creatorcontrib><creatorcontrib>Karojet, Silke</creatorcontrib><creatorcontrib>Thormählen, Ina</creatorcontrib><creatorcontrib>Bernholz, Carolin</creatorcontrib><creatorcontrib>Kunz, Sabine</creatorcontrib><creatorcontrib>Brouwer, Stephan</creatorcontrib><creatorcontrib>Schwochow, Melanie</creatorcontrib><creatorcontrib>Köhl, Karin</creatorcontrib><creatorcontrib>van Dongen, Joost T</creatorcontrib><title>A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis thaliana</subject><subject>Bacteria</subject><subject>Biology</subject><subject>Carbohydrates</subject><subject>Cell walls</subject><subject>DNA microarrays</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Growth</subject><subject>Growth conditions</subject><subject>Host plants</subject><subject>Inoculation</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Nitrogen</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant genetics</subject><subject>Plant growth</subject><subject>Plant Roots - microbiology</subject><subject>Promotion</subject><subject>Pseudomonas</subject><subject>Pseudomonas - physiology</subject><subject>Pseudomonas fluorescens</subject><subject>Roots</subject><subject>Shoots</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDguLDjLlN2r4Iw-JlYGHB22s4TdNp1kxTk3TX9Qv4tU2d7jKVfZA8JCS_8z-3nCx7SvCSsJy8uXCD78Aue9fpJca0ZAW9lx2TktGFoJjdPzgfZY9CuMB4xQohHmZHlFIiqMiPs99r1EEcPFh7jSAEpwxEXSPfml-uAhW1N8MOuQatPVSmdn0wAcUWrIEOkOnqQemAAIUI_hKicd3Cmu8aRQ9dUN704xVY5HVIkQaNrlpjNeq927loui3aencV28fZgwZs0E-m_ST7-v7dl9OPi7PzD5vT9dlCiZLERaloRbnIKXABKZ9mxVIuIHJMq1Ve5UUFulYNbVaE5qUAtiqF4lqwqgBRUcpOsud73d66IKcaBkkYIRSLouCJ2OyJ2sGF7L3Zgb-WDoz8e-H8VoKPRlktG060LiluSKk4LlhBRA2KcwKEcQYsab2dvA3VLgWmu1QWOxOdv3SmlVt3KRnleepPEng1CXj3Y9Ahyp0JSlsLnXZDkCXhtCwKPIb94h_y7uQmagspftM1LrlVo6Zc81wUqwKLkVreQaVV651R6b81qYVzg9czg8RE_TNuYQhBbj5_-n_2_NucfXnAthpsbIOzw_inwhzke1B5F4LXzW2NCZbjuNxUQ47jIqdxSWbPDvtza3QzH-wPDuoSPw</recordid><startdate>20111228</startdate><enddate>20111228</enddate><creator>Schwachtje, Jens</creator><creator>Karojet, Silke</creator><creator>Thormählen, Ina</creator><creator>Bernholz, Carolin</creator><creator>Kunz, Sabine</creator><creator>Brouwer, Stephan</creator><creator>Schwochow, Melanie</creator><creator>Köhl, Karin</creator><creator>van Dongen, Joost T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111228</creationdate><title>A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth</title><author>Schwachtje, Jens ; Karojet, Silke ; Thormählen, Ina ; Bernholz, Carolin ; Kunz, Sabine ; Brouwer, Stephan ; Schwochow, Melanie ; Köhl, Karin ; van Dongen, Joost T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-9c2b24672a46a005f53222a6702b57b78baedcf2f512796a3596c4e63b8a6b223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis thaliana</topic><topic>Bacteria</topic><topic>Biology</topic><topic>Carbohydrates</topic><topic>Cell walls</topic><topic>DNA microarrays</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Growth</topic><topic>Growth conditions</topic><topic>Host plants</topic><topic>Inoculation</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Nitrogen</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant genetics</topic><topic>Plant growth</topic><topic>Plant Roots - microbiology</topic><topic>Promotion</topic><topic>Pseudomonas</topic><topic>Pseudomonas - physiology</topic><topic>Pseudomonas fluorescens</topic><topic>Roots</topic><topic>Shoots</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwachtje, Jens</creatorcontrib><creatorcontrib>Karojet, Silke</creatorcontrib><creatorcontrib>Thormählen, Ina</creatorcontrib><creatorcontrib>Bernholz, Carolin</creatorcontrib><creatorcontrib>Kunz, Sabine</creatorcontrib><creatorcontrib>Brouwer, Stephan</creatorcontrib><creatorcontrib>Schwochow, Melanie</creatorcontrib><creatorcontrib>Köhl, Karin</creatorcontrib><creatorcontrib>van Dongen, Joost T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwachtje, Jens</au><au>Karojet, Silke</au><au>Thormählen, Ina</au><au>Bernholz, Carolin</au><au>Kunz, Sabine</au><au>Brouwer, Stephan</au><au>Schwochow, Melanie</au><au>Köhl, Karin</au><au>van Dongen, Joost T</au><au>Laine, Anna-Liisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-12-28</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>e29382</spage><epage>e29382</epage><pages>e29382-e29382</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22216267</pmid><doi>10.1371/journal.pone.0029382</doi><tpages>e29382</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-12, Vol.6 (12), p.e29382-e29382 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1311206884 |
source | PLoS; MEDLINE; PubMed Central (Open Access); Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; Directory of Open Access Journals (Open Access) |
subjects | Amino acids Analysis Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - microbiology Arabidopsis thaliana Bacteria Biology Carbohydrates Cell walls DNA microarrays Enzymes Gene expression Gene Expression Profiling Genes Genes, Plant Genetic aspects Genomes Growth Growth conditions Host plants Inoculation Metabolism Molecular modelling Nitrogen Physiological aspects Physiology Plant genetics Plant growth Plant Roots - microbiology Promotion Pseudomonas Pseudomonas - physiology Pseudomonas fluorescens Roots Shoots Sucrose Sugar Transcription Transcription (Genetics) Transcription factors Transcription, Genetic |
title | A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20naturally%20associated%20rhizobacterium%20of%20Arabidopsis%20thaliana%20induces%20a%20starvation-like%20transcriptional%20response%20while%20promoting%20growth&rft.jtitle=PloS%20one&rft.au=Schwachtje,%20Jens&rft.date=2011-12-28&rft.volume=6&rft.issue=12&rft.spage=e29382&rft.epage=e29382&rft.pages=e29382-e29382&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0029382&rft_dat=%3Cgale_plos_%3EA476858064%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311206884&rft_id=info:pmid/22216267&rft_galeid=A476858064&rft_doaj_id=oai_doaj_org_article_f41ee920f19c4083816dac441a1343a3&rfr_iscdi=true |