Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models

Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-11, Vol.6 (11), p.e27577-e27577
Hauptverfasser: Jacob, Richard E, Lamm, Wayne J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e27577
container_issue 11
container_start_page e27577
container_title PloS one
container_volume 6
creator Jacob, Richard E
Lamm, Wayne J
description Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.
doi_str_mv 10.1371/journal.pone.0027577
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1310762089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476863328</galeid><doaj_id>oai_doaj_org_article_8a48edefe4f242b3ab00f2e1edb88634</doaj_id><sourcerecordid>A476863328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-a2ed1f090d377109e6669d3e7a6e25e85089c1d1b30c8c427039f9c6de034e233</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkJLD7vVh1eSL4UQ-rEQCDRtr0KWxl4tsuVYcmj-fbVZb1iXHIoPY6TnfTUazWTZa4yWmHL8aevHoVNu2fsOlggRvuL8SXaKS0oWjCD69Oj_JHsRwhahFRWMPc9OCEGCUypOs-Y6qspBHlrlXK46m2J-C120TkXru7z2Q27uOtVanbuxa_JENDbF6PMw9r0fYq5924_xnk_q2o3WHDQhb70BF15mz2rlArya4ln26-uXnxffF5dX39YX55cLzUocF4qAwTUqkaGcY1QCY6w0FLhiQFYgVkiUGhtcUaSFLghHtKxLzQwgWgCh9Cx7u_ftnQ9yqlGQmGLEUyVEmYj1njBebWU_pPsMd9IrK-8X_NBINUSrHUihCgEGaihqUpCKqgqhmgAGUwnBaJG8Pk-njVULRqe6DcrNTOc7nd3Ixt9KSjASeJfuh8lg8DcjhChbGzQ4pzrwY5AlWjHGEeOJfPcP-fjlJqpRKX_b1T4dq3ee8rzgLCVNiUjU8hEqfQbSk6V-qm1anwk-zgSJifAnNmoMQa6vf_w_e_V7zr4_YjegXNwE78ZdJ4U5WOxBPfgQBqgfaoyR3I3DoRpyNw5yGocke3P8Pg-iQ__Tv6KzBmE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1310762089</pqid></control><display><type>article</type><title>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jacob, Richard E ; Lamm, Wayne J</creator><creatorcontrib>Jacob, Richard E ; Lamm, Wayne J</creatorcontrib><description>Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0027577</identifier><identifier>PMID: 22087338</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Automation ; Biology ; Breathing ; CAT scans ; Computational fluid dynamics ; Computed tomography ; Computer applications ; Fluid dynamics ; Fluid dynamics models ; Hydrodynamics ; Image acquisition ; Imaging, Three-Dimensional ; Laboratories ; Lung - physiology ; Lungs ; Mathematical models ; Mechanical ventilation ; Mechanics ; Mechanics (physics) ; Medical imaging ; Medical research ; Medicine ; Models, Biological ; NMR ; Nuclear magnetic resonance ; Pediatrics ; Pressure ; Pressure transducers ; Rats ; Recruitment ; Respiration ; Simulation ; Three dimensional models ; Three-dimensional imaging ; Tomography ; Tomography, X-Ray Computed ; User interface ; Ventilation ; Ventilators ; Veterinary Science ; Waveforms</subject><ispartof>PloS one, 2011-11, Vol.6 (11), p.e27577-e27577</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Jacob, Lamm. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jacob, Lamm. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-a2ed1f090d377109e6669d3e7a6e25e85089c1d1b30c8c427039f9c6de034e233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22087338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Richard E</creatorcontrib><creatorcontrib>Lamm, Wayne J</creatorcontrib><title>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.</description><subject>Animals</subject><subject>Automation</subject><subject>Biology</subject><subject>Breathing</subject><subject>CAT scans</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Fluid dynamics</subject><subject>Fluid dynamics models</subject><subject>Hydrodynamics</subject><subject>Image acquisition</subject><subject>Imaging, Three-Dimensional</subject><subject>Laboratories</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Mechanical ventilation</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pediatrics</subject><subject>Pressure</subject><subject>Pressure transducers</subject><subject>Rats</subject><subject>Recruitment</subject><subject>Respiration</subject><subject>Simulation</subject><subject>Three dimensional models</subject><subject>Three-dimensional imaging</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed</subject><subject>User interface</subject><subject>Ventilation</subject><subject>Ventilators</subject><subject>Veterinary Science</subject><subject>Waveforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkJLD7vVh1eSL4UQ-rEQCDRtr0KWxl4tsuVYcmj-fbVZb1iXHIoPY6TnfTUazWTZa4yWmHL8aevHoVNu2fsOlggRvuL8SXaKS0oWjCD69Oj_JHsRwhahFRWMPc9OCEGCUypOs-Y6qspBHlrlXK46m2J-C120TkXru7z2Q27uOtVanbuxa_JENDbF6PMw9r0fYq5924_xnk_q2o3WHDQhb70BF15mz2rlArya4ln26-uXnxffF5dX39YX55cLzUocF4qAwTUqkaGcY1QCY6w0FLhiQFYgVkiUGhtcUaSFLghHtKxLzQwgWgCh9Cx7u_ftnQ9yqlGQmGLEUyVEmYj1njBebWU_pPsMd9IrK-8X_NBINUSrHUihCgEGaihqUpCKqgqhmgAGUwnBaJG8Pk-njVULRqe6DcrNTOc7nd3Ixt9KSjASeJfuh8lg8DcjhChbGzQ4pzrwY5AlWjHGEeOJfPcP-fjlJqpRKX_b1T4dq3ee8rzgLCVNiUjU8hEqfQbSk6V-qm1anwk-zgSJifAnNmoMQa6vf_w_e_V7zr4_YjegXNwE78ZdJ4U5WOxBPfgQBqgfaoyR3I3DoRpyNw5yGocke3P8Pg-iQ__Tv6KzBmE</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Jacob, Richard E</creator><creator>Lamm, Wayne J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111108</creationdate><title>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</title><author>Jacob, Richard E ; Lamm, Wayne J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-a2ed1f090d377109e6669d3e7a6e25e85089c1d1b30c8c427039f9c6de034e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Automation</topic><topic>Biology</topic><topic>Breathing</topic><topic>CAT scans</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Fluid dynamics</topic><topic>Fluid dynamics models</topic><topic>Hydrodynamics</topic><topic>Image acquisition</topic><topic>Imaging, Three-Dimensional</topic><topic>Laboratories</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Mechanical ventilation</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pediatrics</topic><topic>Pressure</topic><topic>Pressure transducers</topic><topic>Rats</topic><topic>Recruitment</topic><topic>Respiration</topic><topic>Simulation</topic><topic>Three dimensional models</topic><topic>Three-dimensional imaging</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed</topic><topic>User interface</topic><topic>Ventilation</topic><topic>Ventilators</topic><topic>Veterinary Science</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Richard E</creatorcontrib><creatorcontrib>Lamm, Wayne J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Richard E</au><au>Lamm, Wayne J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>6</volume><issue>11</issue><spage>e27577</spage><epage>e27577</epage><pages>e27577-e27577</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22087338</pmid><doi>10.1371/journal.pone.0027577</doi><tpages>e27577</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-11, Vol.6 (11), p.e27577-e27577
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1310762089
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Automation
Biology
Breathing
CAT scans
Computational fluid dynamics
Computed tomography
Computer applications
Fluid dynamics
Fluid dynamics models
Hydrodynamics
Image acquisition
Imaging, Three-Dimensional
Laboratories
Lung - physiology
Lungs
Mathematical models
Mechanical ventilation
Mechanics
Mechanics (physics)
Medical imaging
Medical research
Medicine
Models, Biological
NMR
Nuclear magnetic resonance
Pediatrics
Pressure
Pressure transducers
Rats
Recruitment
Respiration
Simulation
Three dimensional models
Three-dimensional imaging
Tomography
Tomography, X-Ray Computed
User interface
Ventilation
Ventilators
Veterinary Science
Waveforms
title Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20small%20animal%20ventilation%20for%20dynamic%20lung%20imaging%20to%20support%20computational%20fluid%20dynamics%20models&rft.jtitle=PloS%20one&rft.au=Jacob,%20Richard%20E&rft.date=2011-11-08&rft.volume=6&rft.issue=11&rft.spage=e27577&rft.epage=e27577&rft.pages=e27577-e27577&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0027577&rft_dat=%3Cgale_plos_%3EA476863328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1310762089&rft_id=info:pmid/22087338&rft_galeid=A476863328&rft_doaj_id=oai_doaj_org_article_8a48edefe4f242b3ab00f2e1edb88634&rfr_iscdi=true