Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models
Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over wh...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-11, Vol.6 (11), p.e27577-e27577 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e27577 |
---|---|
container_issue | 11 |
container_start_page | e27577 |
container_title | PloS one |
container_volume | 6 |
creator | Jacob, Richard E Lamm, Wayne J |
description | Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics. |
doi_str_mv | 10.1371/journal.pone.0027577 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1310762089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476863328</galeid><doaj_id>oai_doaj_org_article_8a48edefe4f242b3ab00f2e1edb88634</doaj_id><sourcerecordid>A476863328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-a2ed1f090d377109e6669d3e7a6e25e85089c1d1b30c8c427039f9c6de034e233</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkJLD7vVh1eSL4UQ-rEQCDRtr0KWxl4tsuVYcmj-fbVZb1iXHIoPY6TnfTUazWTZa4yWmHL8aevHoVNu2fsOlggRvuL8SXaKS0oWjCD69Oj_JHsRwhahFRWMPc9OCEGCUypOs-Y6qspBHlrlXK46m2J-C120TkXru7z2Q27uOtVanbuxa_JENDbF6PMw9r0fYq5924_xnk_q2o3WHDQhb70BF15mz2rlArya4ln26-uXnxffF5dX39YX55cLzUocF4qAwTUqkaGcY1QCY6w0FLhiQFYgVkiUGhtcUaSFLghHtKxLzQwgWgCh9Cx7u_ftnQ9yqlGQmGLEUyVEmYj1njBebWU_pPsMd9IrK-8X_NBINUSrHUihCgEGaihqUpCKqgqhmgAGUwnBaJG8Pk-njVULRqe6DcrNTOc7nd3Ixt9KSjASeJfuh8lg8DcjhChbGzQ4pzrwY5AlWjHGEeOJfPcP-fjlJqpRKX_b1T4dq3ee8rzgLCVNiUjU8hEqfQbSk6V-qm1anwk-zgSJifAnNmoMQa6vf_w_e_V7zr4_YjegXNwE78ZdJ4U5WOxBPfgQBqgfaoyR3I3DoRpyNw5yGocke3P8Pg-iQ__Tv6KzBmE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1310762089</pqid></control><display><type>article</type><title>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jacob, Richard E ; Lamm, Wayne J</creator><creatorcontrib>Jacob, Richard E ; Lamm, Wayne J</creatorcontrib><description>Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0027577</identifier><identifier>PMID: 22087338</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Automation ; Biology ; Breathing ; CAT scans ; Computational fluid dynamics ; Computed tomography ; Computer applications ; Fluid dynamics ; Fluid dynamics models ; Hydrodynamics ; Image acquisition ; Imaging, Three-Dimensional ; Laboratories ; Lung - physiology ; Lungs ; Mathematical models ; Mechanical ventilation ; Mechanics ; Mechanics (physics) ; Medical imaging ; Medical research ; Medicine ; Models, Biological ; NMR ; Nuclear magnetic resonance ; Pediatrics ; Pressure ; Pressure transducers ; Rats ; Recruitment ; Respiration ; Simulation ; Three dimensional models ; Three-dimensional imaging ; Tomography ; Tomography, X-Ray Computed ; User interface ; Ventilation ; Ventilators ; Veterinary Science ; Waveforms</subject><ispartof>PloS one, 2011-11, Vol.6 (11), p.e27577-e27577</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Jacob, Lamm. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jacob, Lamm. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-a2ed1f090d377109e6669d3e7a6e25e85089c1d1b30c8c427039f9c6de034e233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22087338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Richard E</creatorcontrib><creatorcontrib>Lamm, Wayne J</creatorcontrib><title>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.</description><subject>Animals</subject><subject>Automation</subject><subject>Biology</subject><subject>Breathing</subject><subject>CAT scans</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Fluid dynamics</subject><subject>Fluid dynamics models</subject><subject>Hydrodynamics</subject><subject>Image acquisition</subject><subject>Imaging, Three-Dimensional</subject><subject>Laboratories</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Mechanical ventilation</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pediatrics</subject><subject>Pressure</subject><subject>Pressure transducers</subject><subject>Rats</subject><subject>Recruitment</subject><subject>Respiration</subject><subject>Simulation</subject><subject>Three dimensional models</subject><subject>Three-dimensional imaging</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed</subject><subject>User interface</subject><subject>Ventilation</subject><subject>Ventilators</subject><subject>Veterinary Science</subject><subject>Waveforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkJLD7vVh1eSL4UQ-rEQCDRtr0KWxl4tsuVYcmj-fbVZb1iXHIoPY6TnfTUazWTZa4yWmHL8aevHoVNu2fsOlggRvuL8SXaKS0oWjCD69Oj_JHsRwhahFRWMPc9OCEGCUypOs-Y6qspBHlrlXK46m2J-C120TkXru7z2Q27uOtVanbuxa_JENDbF6PMw9r0fYq5924_xnk_q2o3WHDQhb70BF15mz2rlArya4ln26-uXnxffF5dX39YX55cLzUocF4qAwTUqkaGcY1QCY6w0FLhiQFYgVkiUGhtcUaSFLghHtKxLzQwgWgCh9Cx7u_ftnQ9yqlGQmGLEUyVEmYj1njBebWU_pPsMd9IrK-8X_NBINUSrHUihCgEGaihqUpCKqgqhmgAGUwnBaJG8Pk-njVULRqe6DcrNTOc7nd3Ixt9KSjASeJfuh8lg8DcjhChbGzQ4pzrwY5AlWjHGEeOJfPcP-fjlJqpRKX_b1T4dq3ee8rzgLCVNiUjU8hEqfQbSk6V-qm1anwk-zgSJifAnNmoMQa6vf_w_e_V7zr4_YjegXNwE78ZdJ4U5WOxBPfgQBqgfaoyR3I3DoRpyNw5yGocke3P8Pg-iQ__Tv6KzBmE</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Jacob, Richard E</creator><creator>Lamm, Wayne J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111108</creationdate><title>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</title><author>Jacob, Richard E ; Lamm, Wayne J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-a2ed1f090d377109e6669d3e7a6e25e85089c1d1b30c8c427039f9c6de034e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Automation</topic><topic>Biology</topic><topic>Breathing</topic><topic>CAT scans</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Fluid dynamics</topic><topic>Fluid dynamics models</topic><topic>Hydrodynamics</topic><topic>Image acquisition</topic><topic>Imaging, Three-Dimensional</topic><topic>Laboratories</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Mechanical ventilation</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pediatrics</topic><topic>Pressure</topic><topic>Pressure transducers</topic><topic>Rats</topic><topic>Recruitment</topic><topic>Respiration</topic><topic>Simulation</topic><topic>Three dimensional models</topic><topic>Three-dimensional imaging</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed</topic><topic>User interface</topic><topic>Ventilation</topic><topic>Ventilators</topic><topic>Veterinary Science</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Richard E</creatorcontrib><creatorcontrib>Lamm, Wayne J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Richard E</au><au>Lamm, Wayne J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>6</volume><issue>11</issue><spage>e27577</spage><epage>e27577</epage><pages>e27577-e27577</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP) or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT) imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22087338</pmid><doi>10.1371/journal.pone.0027577</doi><tpages>e27577</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-11, Vol.6 (11), p.e27577-e27577 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1310762089 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Automation Biology Breathing CAT scans Computational fluid dynamics Computed tomography Computer applications Fluid dynamics Fluid dynamics models Hydrodynamics Image acquisition Imaging, Three-Dimensional Laboratories Lung - physiology Lungs Mathematical models Mechanical ventilation Mechanics Mechanics (physics) Medical imaging Medical research Medicine Models, Biological NMR Nuclear magnetic resonance Pediatrics Pressure Pressure transducers Rats Recruitment Respiration Simulation Three dimensional models Three-dimensional imaging Tomography Tomography, X-Ray Computed User interface Ventilation Ventilators Veterinary Science Waveforms |
title | Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20small%20animal%20ventilation%20for%20dynamic%20lung%20imaging%20to%20support%20computational%20fluid%20dynamics%20models&rft.jtitle=PloS%20one&rft.au=Jacob,%20Richard%20E&rft.date=2011-11-08&rft.volume=6&rft.issue=11&rft.spage=e27577&rft.epage=e27577&rft.pages=e27577-e27577&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0027577&rft_dat=%3Cgale_plos_%3EA476863328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1310762089&rft_id=info:pmid/22087338&rft_galeid=A476863328&rft_doaj_id=oai_doaj_org_article_8a48edefe4f242b3ab00f2e1edb88634&rfr_iscdi=true |