Finding and testing network communities by lumped Markov chains

Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-11, Vol.6 (11), p.e27028-e27028
1. Verfasser: Piccardi, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e27028
container_issue 11
container_start_page e27028
container_title PloS one
container_volume 6
creator Piccardi, Carlo
description Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.
doi_str_mv 10.1371/journal.pone.0027028
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1310648865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476863520</galeid><doaj_id>oai_doaj_org_article_aaea39e2aec846bc9ec2e92cba6efa99</doaj_id><sourcerecordid>A476863520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-d5e156f1c72b411ae122b35fa5f629710f15da8deb2e1436daeff206002b58b03</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiNERUvhHyCIhATqYRd_JE5yAVUVhZWKKvF1tSbOZNfbxF5sp9B_j7ebVhvUA_LB1viZdzzjN0leUDKnvKDv1nZwBrr5xhqcE8IKwspHyRGtOJsJRvjjvfNh8tT7NSE5L4V4khwyRgrOsvwo-XCuTaPNMgXTpAF92J4Nht_WXaXK9v1gdNDo0_om7YZ-g036BdyVvU7VCrTxz5KDFjqPz8f9OPlx_vH72efZxeWnxdnpxUyJioZZkyPNRUtVweqMUkDKWM3zFvJWsKqgpKV5A2WDNUOacdEAti0jIvZV52VN-HHyaqe76ayXY-9eUk6JyMpS5JFY7IjGwlpunO7B3UgLWt4GrFtKcEGrDiUAAq-QAaoyE7WqUDGsmKpBYAtVFbXej9WGusdGoQkOuono9MbolVzaa8njYEu2fe7bUcDZX0Mcq-y1V9h1YNAOXlaEC0FpQSP5-h_y4eZGagnx_dq0NpZVW015mhWiFDy_rTp_gIqrwV6r6JNWx_gk4WSSEJmAf8ISBu_l4tvX_2cvf07ZN3vsCqELK2-7IWhr_BTMdqBy1nuH7f2MKZFbm99NQ25tLkebx7SX-_9zn3Tna_4XHa332A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1310648865</pqid></control><display><type>article</type><title>Finding and testing network communities by lumped Markov chains</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Piccardi, Carlo</creator><contributor>Moreno, Yamir</contributor><creatorcontrib>Piccardi, Carlo ; Moreno, Yamir</creatorcontrib><description>Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0027028</identifier><identifier>PMID: 22073245</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Cluster Analysis ; Clusters ; Communities ; Connectivity ; Heuristic ; Markov analysis ; Markov Chains ; Markov processes ; Mathematical models ; Mathematics ; Methods ; Partitions ; Physics ; Probability ; Quality ; Science ; Social and Behavioral Sciences ; Social networks ; Social sciences ; Structure-function relationships</subject><ispartof>PloS one, 2011-11, Vol.6 (11), p.e27028-e27028</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Carlo Piccardi. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Carlo Piccardi. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-d5e156f1c72b411ae122b35fa5f629710f15da8deb2e1436daeff206002b58b03</citedby><cites>FETCH-LOGICAL-c691t-d5e156f1c72b411ae122b35fa5f629710f15da8deb2e1436daeff206002b58b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207820/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207820/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22073245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moreno, Yamir</contributor><creatorcontrib>Piccardi, Carlo</creatorcontrib><title>Finding and testing network communities by lumped Markov chains</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.</description><subject>Analysis</subject><subject>Cluster Analysis</subject><subject>Clusters</subject><subject>Communities</subject><subject>Connectivity</subject><subject>Heuristic</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Partitions</subject><subject>Physics</subject><subject>Probability</subject><subject>Quality</subject><subject>Science</subject><subject>Social and Behavioral Sciences</subject><subject>Social networks</subject><subject>Social sciences</subject><subject>Structure-function relationships</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiNERUvhHyCIhATqYRd_JE5yAVUVhZWKKvF1tSbOZNfbxF5sp9B_j7ebVhvUA_LB1viZdzzjN0leUDKnvKDv1nZwBrr5xhqcE8IKwspHyRGtOJsJRvjjvfNh8tT7NSE5L4V4khwyRgrOsvwo-XCuTaPNMgXTpAF92J4Nht_WXaXK9v1gdNDo0_om7YZ-g036BdyVvU7VCrTxz5KDFjqPz8f9OPlx_vH72efZxeWnxdnpxUyJioZZkyPNRUtVweqMUkDKWM3zFvJWsKqgpKV5A2WDNUOacdEAti0jIvZV52VN-HHyaqe76ayXY-9eUk6JyMpS5JFY7IjGwlpunO7B3UgLWt4GrFtKcEGrDiUAAq-QAaoyE7WqUDGsmKpBYAtVFbXej9WGusdGoQkOuono9MbolVzaa8njYEu2fe7bUcDZX0Mcq-y1V9h1YNAOXlaEC0FpQSP5-h_y4eZGagnx_dq0NpZVW015mhWiFDy_rTp_gIqrwV6r6JNWx_gk4WSSEJmAf8ISBu_l4tvX_2cvf07ZN3vsCqELK2-7IWhr_BTMdqBy1nuH7f2MKZFbm99NQ25tLkebx7SX-_9zn3Tna_4XHa332A</recordid><startdate>20111103</startdate><enddate>20111103</enddate><creator>Piccardi, Carlo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111103</creationdate><title>Finding and testing network communities by lumped Markov chains</title><author>Piccardi, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-d5e156f1c72b411ae122b35fa5f629710f15da8deb2e1436daeff206002b58b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Cluster Analysis</topic><topic>Clusters</topic><topic>Communities</topic><topic>Connectivity</topic><topic>Heuristic</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Partitions</topic><topic>Physics</topic><topic>Probability</topic><topic>Quality</topic><topic>Science</topic><topic>Social and Behavioral Sciences</topic><topic>Social networks</topic><topic>Social sciences</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piccardi, Carlo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piccardi, Carlo</au><au>Moreno, Yamir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding and testing network communities by lumped Markov chains</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-11-03</date><risdate>2011</risdate><volume>6</volume><issue>11</issue><spage>e27028</spage><epage>e27028</epage><pages>e27028-e27028</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22073245</pmid><doi>10.1371/journal.pone.0027028</doi><tpages>e27028</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-11, Vol.6 (11), p.e27028-e27028
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1310648865
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Cluster Analysis
Clusters
Communities
Connectivity
Heuristic
Markov analysis
Markov Chains
Markov processes
Mathematical models
Mathematics
Methods
Partitions
Physics
Probability
Quality
Science
Social and Behavioral Sciences
Social networks
Social sciences
Structure-function relationships
title Finding and testing network communities by lumped Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20and%20testing%20network%20communities%20by%20lumped%20Markov%20chains&rft.jtitle=PloS%20one&rft.au=Piccardi,%20Carlo&rft.date=2011-11-03&rft.volume=6&rft.issue=11&rft.spage=e27028&rft.epage=e27028&rft.pages=e27028-e27028&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0027028&rft_dat=%3Cgale_plos_%3EA476863520%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1310648865&rft_id=info:pmid/22073245&rft_galeid=A476863520&rft_doaj_id=oai_doaj_org_article_aaea39e2aec846bc9ec2e92cba6efa99&rfr_iscdi=true