Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions

A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-10, Vol.6 (10), p.e25579-e25579
Hauptverfasser: De Barro, Paul, Ahmed, Muhammad Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e25579
container_issue 10
container_start_page e25579
container_title PloS one
container_volume 6
creator De Barro, Paul
Ahmed, Muhammad Z
description A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.
doi_str_mv 10.1371/journal.pone.0025579
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1309311468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476869374</galeid><doaj_id>oai_doaj_org_article_4b411afb1831487f8c6ce5577d1aa28a</doaj_id><sourcerecordid>A476869374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-85bc9e7358e46db019df2670f11628392e141460cb3ecdecab14ec4038a2d3773</originalsourceid><addsrcrecordid>eNqNk-9r1DAYx4s43Jz-B6IFQdmLO5MmTZM3whw6DwYDf70Nafq0l7PX1CQ9t__e1OvGVfZCCm1IP99vkm-eJ0leYLTEpMDvNnZwnWqXve1giVCW54V4lJxgQbIFyxB5fDA-Tp56v0EoJ5yxJ8lxhoWII3GSrC-hg2B0Gt-_rftpuia1dRrWkH6ArfFGpUGVSptUu9t-BH0P2oBPtd32LdykDnagWp_2KgRw3agujW1tY7RqU9PtlDe288-Sozpi8Hz6nibfP338dvF5cXV9ubo4v1poJnBY8LzUAgqSc6CsKhEWVZ2xAtUYs4wTkQGmmDKkSwK6Aq1KTEFTRLjKKlIU5DR5tfftW-vlFJKXmCBBcFTySKz2RGXVRvbObJW7lVYZ-XfCukYqF0_agqQlxVjVJeYEU17UXDMNMeiiwkplXEWv99NqQ7mFSkMXnGpnpvM_nVnLxu4kwZwKgaPB28nA2V8D-CBj6BraVnVgBy-54DkqEMsi-fof8uHDTVSj4v5NV9u4rB495TktGGeCFDRSyweo-FTxznUsqNrE-ZngbCaITICb0KjBe7n6-uX_2esfc_bNAbuOhRTW3rZDGEtmDtI9qJ313kF9nzFGcuyHuzTk2A9y6ocoe3l4P_eiuwYgfwD5YgaH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1309311468</pqid></control><display><type>article</type><title>Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>De Barro, Paul ; Ahmed, Muhammad Z</creator><contributor>Williams, Barry L.</contributor><creatorcontrib>De Barro, Paul ; Ahmed, Muhammad Z ; Williams, Barry L.</creatorcontrib><description>A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for &gt;80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0025579</identifier><identifier>PMID: 21998669</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Bemisia tabaci ; Biogeography ; Biology ; Cladistic analysis ; Cryptic species ; Cytochrome ; Electron Transport Complex IV - genetics ; Evolution ; Flowers &amp; plants ; Genealogy ; Genes, Insect - genetics ; Genetic diversity ; Genetic Variation - genetics ; Haplotypes ; Haplotypes - genetics ; Hemiptera - classification ; Hemiptera - genetics ; Hirschfeldia incana ; Home range ; Introduced Species ; Invasive species ; Jargon ; Mitochondria ; Mitochondria - enzymology ; Molecular Sequence Data ; Morphology ; Networking ; Nonnative species ; Oxidases ; Phylogenetics ; Phylogeny ; Phylogeography ; Plant mitochondria ; Population biology ; Styela clava ; Supports ; Taxa ; Terminology ; Wolbachia</subject><ispartof>PloS one, 2011-10, Vol.6 (10), p.e25579-e25579</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 De Barro, Ahmed. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>De Barro, Ahmed. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-85bc9e7358e46db019df2670f11628392e141460cb3ecdecab14ec4038a2d3773</citedby><cites>FETCH-LOGICAL-c691t-85bc9e7358e46db019df2670f11628392e141460cb3ecdecab14ec4038a2d3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184991/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184991/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21998669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Williams, Barry L.</contributor><creatorcontrib>De Barro, Paul</creatorcontrib><creatorcontrib>Ahmed, Muhammad Z</creatorcontrib><title>Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for &gt;80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.</description><subject>Analysis</subject><subject>Animals</subject><subject>Bemisia tabaci</subject><subject>Biogeography</subject><subject>Biology</subject><subject>Cladistic analysis</subject><subject>Cryptic species</subject><subject>Cytochrome</subject><subject>Electron Transport Complex IV - genetics</subject><subject>Evolution</subject><subject>Flowers &amp; plants</subject><subject>Genealogy</subject><subject>Genes, Insect - genetics</subject><subject>Genetic diversity</subject><subject>Genetic Variation - genetics</subject><subject>Haplotypes</subject><subject>Haplotypes - genetics</subject><subject>Hemiptera - classification</subject><subject>Hemiptera - genetics</subject><subject>Hirschfeldia incana</subject><subject>Home range</subject><subject>Introduced Species</subject><subject>Invasive species</subject><subject>Jargon</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Molecular Sequence Data</subject><subject>Morphology</subject><subject>Networking</subject><subject>Nonnative species</subject><subject>Oxidases</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Phylogeography</subject><subject>Plant mitochondria</subject><subject>Population biology</subject><subject>Styela clava</subject><subject>Supports</subject><subject>Taxa</subject><subject>Terminology</subject><subject>Wolbachia</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk-9r1DAYx4s43Jz-B6IFQdmLO5MmTZM3whw6DwYDf70Nafq0l7PX1CQ9t__e1OvGVfZCCm1IP99vkm-eJ0leYLTEpMDvNnZwnWqXve1giVCW54V4lJxgQbIFyxB5fDA-Tp56v0EoJ5yxJ8lxhoWII3GSrC-hg2B0Gt-_rftpuia1dRrWkH6ArfFGpUGVSptUu9t-BH0P2oBPtd32LdykDnagWp_2KgRw3agujW1tY7RqU9PtlDe288-Sozpi8Hz6nibfP338dvF5cXV9ubo4v1poJnBY8LzUAgqSc6CsKhEWVZ2xAtUYs4wTkQGmmDKkSwK6Aq1KTEFTRLjKKlIU5DR5tfftW-vlFJKXmCBBcFTySKz2RGXVRvbObJW7lVYZ-XfCukYqF0_agqQlxVjVJeYEU17UXDMNMeiiwkplXEWv99NqQ7mFSkMXnGpnpvM_nVnLxu4kwZwKgaPB28nA2V8D-CBj6BraVnVgBy-54DkqEMsi-fof8uHDTVSj4v5NV9u4rB495TktGGeCFDRSyweo-FTxznUsqNrE-ZngbCaITICb0KjBe7n6-uX_2esfc_bNAbuOhRTW3rZDGEtmDtI9qJ313kF9nzFGcuyHuzTk2A9y6ocoe3l4P_eiuwYgfwD5YgaH</recordid><startdate>20111003</startdate><enddate>20111003</enddate><creator>De Barro, Paul</creator><creator>Ahmed, Muhammad Z</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20111003</creationdate><title>Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions</title><author>De Barro, Paul ; Ahmed, Muhammad Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-85bc9e7358e46db019df2670f11628392e141460cb3ecdecab14ec4038a2d3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Bemisia tabaci</topic><topic>Biogeography</topic><topic>Biology</topic><topic>Cladistic analysis</topic><topic>Cryptic species</topic><topic>Cytochrome</topic><topic>Electron Transport Complex IV - genetics</topic><topic>Evolution</topic><topic>Flowers &amp; plants</topic><topic>Genealogy</topic><topic>Genes, Insect - genetics</topic><topic>Genetic diversity</topic><topic>Genetic Variation - genetics</topic><topic>Haplotypes</topic><topic>Haplotypes - genetics</topic><topic>Hemiptera - classification</topic><topic>Hemiptera - genetics</topic><topic>Hirschfeldia incana</topic><topic>Home range</topic><topic>Introduced Species</topic><topic>Invasive species</topic><topic>Jargon</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Molecular Sequence Data</topic><topic>Morphology</topic><topic>Networking</topic><topic>Nonnative species</topic><topic>Oxidases</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Phylogeography</topic><topic>Plant mitochondria</topic><topic>Population biology</topic><topic>Styela clava</topic><topic>Supports</topic><topic>Taxa</topic><topic>Terminology</topic><topic>Wolbachia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Barro, Paul</creatorcontrib><creatorcontrib>Ahmed, Muhammad Z</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Barro, Paul</au><au>Ahmed, Muhammad Z</au><au>Williams, Barry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-10-03</date><risdate>2011</risdate><volume>6</volume><issue>10</issue><spage>e25579</spage><epage>e25579</epage><pages>e25579-e25579</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for &gt;80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21998669</pmid><doi>10.1371/journal.pone.0025579</doi><tpages>e25579</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-10, Vol.6 (10), p.e25579-e25579
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1309311468
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Bemisia tabaci
Biogeography
Biology
Cladistic analysis
Cryptic species
Cytochrome
Electron Transport Complex IV - genetics
Evolution
Flowers & plants
Genealogy
Genes, Insect - genetics
Genetic diversity
Genetic Variation - genetics
Haplotypes
Haplotypes - genetics
Hemiptera - classification
Hemiptera - genetics
Hirschfeldia incana
Home range
Introduced Species
Invasive species
Jargon
Mitochondria
Mitochondria - enzymology
Molecular Sequence Data
Morphology
Networking
Nonnative species
Oxidases
Phylogenetics
Phylogeny
Phylogeography
Plant mitochondria
Population biology
Styela clava
Supports
Taxa
Terminology
Wolbachia
title Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20networking%20of%20the%20Bemisia%20tabaci%20cryptic%20species%20complex%20reveals%20pattern%20of%20biological%20invasions&rft.jtitle=PloS%20one&rft.au=De%20Barro,%20Paul&rft.date=2011-10-03&rft.volume=6&rft.issue=10&rft.spage=e25579&rft.epage=e25579&rft.pages=e25579-e25579&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0025579&rft_dat=%3Cgale_plos_%3EA476869374%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1309311468&rft_id=info:pmid/21998669&rft_galeid=A476869374&rft_doaj_id=oai_doaj_org_article_4b411afb1831487f8c6ce5577d1aa28a&rfr_iscdi=true