The effect of OPA1 on mitochondrial Ca²⁺ signaling

The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-09, Vol.6 (9), p.e25199-e25199
Hauptverfasser: Fülöp, László, Szanda, Gergö, Enyedi, Balázs, Várnai, Péter, Spät, András
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e25199
container_issue 9
container_start_page e25199
container_title PloS one
container_volume 6
creator Fülöp, László
Szanda, Gergö
Enyedi, Balázs
Várnai, Péter
Spät, András
description The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca²⁺ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca²⁺ to the transporters in the crista membrane and thus would enhance Ca²⁺ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca²⁺ signals evoked with K⁺ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca²⁺] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca²⁺ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca²⁺ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na⁺/Ca²⁺ and Ca²⁺/H⁺ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca²⁺ metabolism.
doi_str_mv 10.1371/journal.pone.0025199
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1309034832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b8ffcdf650aa4591b84f20ad60436973</doaj_id><sourcerecordid>896830348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-d1ebb0f22d594f1e00a565e6a204d1b207c93c8dd3eb4983ff0569436225323e3</originalsourceid><addsrcrecordid>eNptUstuEzEUtRCItoE_QDASC1ZJr33Hjr1BqqIClSqVRbu2PH4kjibjYE8qseSXWHbJp_AlnTbTqkWsbPmexz3yIeQdhRnFOT1ep13uTDvbps7PABinSr0gh1QhmwoG-PLJ_YAclbIG4CiFeE0OGFUSUPFDwi9XvvIheNtXKVQX309olbpqE_tkV6lzOZq2Wpg_v__-uqlKXA6OsVu-Ia-CaYt_O54TcvXl9HLxbXp-8fVscXI-tRxEP3XUNw0ExhxXdaAewHDBvTAMakcbBnOr0Ern0De1khgCcKFqFIxxZOhxQj7sdbdtKnpMXDRFUIC1HDATcrZHuGTWepvjxuSfOpmo7x9SXmqT-2hbrxsZgnVBcDCm5oo2sg4MjBMwOKo5DlqfR7dds_HO-q7Ppn0m-nzSxZVepmuNVDI154PAp1Egpx87X3q9icX6tjWdT7uipRIS7xefkI__IP8frt6jbE6lZB8ed6Gg70rwwNJ3JdBjCQba-6c5HkkPv463KtavRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1309034832</pqid></control><display><type>article</type><title>The effect of OPA1 on mitochondrial Ca²⁺ signaling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fülöp, László ; Szanda, Gergö ; Enyedi, Balázs ; Várnai, Péter ; Spät, András</creator><contributor>Zhivotovsky, Boris</contributor><creatorcontrib>Fülöp, László ; Szanda, Gergö ; Enyedi, Balázs ; Várnai, Péter ; Spät, András ; Zhivotovsky, Boris</creatorcontrib><description>The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca²⁺ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca²⁺ to the transporters in the crista membrane and thus would enhance Ca²⁺ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca²⁺ signals evoked with K⁺ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca²⁺] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca²⁺ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca²⁺ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na⁺/Ca²⁺ and Ca²⁺/H⁺ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca²⁺ metabolism.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0025199</identifier><identifier>PMID: 21980395</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antiporters - metabolism ; Apoptosis ; Atrophy ; Biology ; Ca2+/H+-exchanging ATPase ; Calcium (mitochondrial) ; Calcium - metabolism ; Calcium influx ; Calcium Signaling - genetics ; Calcium Signaling - physiology ; Calcium signalling ; Cell Line ; Confocal ; Confocal microscopy ; Cristae ; Cytochrome ; Cytochrome c ; Depolarization ; Dynamin ; Fluorescence ; Fluorescence resonance energy transfer ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Guanosine triphosphatases ; Guanosinetriphosphatase ; HeLa Cells ; Histamine ; Humans ; Hypoxia ; Immunoblotting ; Kinases ; Ligands ; Medicine ; Membrane potential ; Membrane Potential, Mitochondrial - genetics ; Membrane Potential, Mitochondrial - physiology ; Membranes ; Metabolism ; Microscopy ; Microscopy, Confocal ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Morphology ; Mutation ; Optic atrophy ; Organelles ; Pharmacology ; Physiology ; Proteins ; Ribonucleic acid ; RNA ; RNA, Small Interfering ; Rodents ; Scanning microscopy ; siRNA ; Sodium ; Sodium-Calcium Exchanger - metabolism ; Transport processes</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e25199-e25199</ispartof><rights>Copyright Public Library of Science Sep 2011</rights><rights>Fülöp et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-d1ebb0f22d594f1e00a565e6a204d1b207c93c8dd3eb4983ff0569436225323e3</citedby><cites>FETCH-LOGICAL-c506t-d1ebb0f22d594f1e00a565e6a204d1b207c93c8dd3eb4983ff0569436225323e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182975/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182975/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21980395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhivotovsky, Boris</contributor><creatorcontrib>Fülöp, László</creatorcontrib><creatorcontrib>Szanda, Gergö</creatorcontrib><creatorcontrib>Enyedi, Balázs</creatorcontrib><creatorcontrib>Várnai, Péter</creatorcontrib><creatorcontrib>Spät, András</creatorcontrib><title>The effect of OPA1 on mitochondrial Ca²⁺ signaling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca²⁺ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca²⁺ to the transporters in the crista membrane and thus would enhance Ca²⁺ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca²⁺ signals evoked with K⁺ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca²⁺] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca²⁺ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca²⁺ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na⁺/Ca²⁺ and Ca²⁺/H⁺ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca²⁺ metabolism.</description><subject>Antiporters - metabolism</subject><subject>Apoptosis</subject><subject>Atrophy</subject><subject>Biology</subject><subject>Ca2+/H+-exchanging ATPase</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium - metabolism</subject><subject>Calcium influx</subject><subject>Calcium Signaling - genetics</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium signalling</subject><subject>Cell Line</subject><subject>Confocal</subject><subject>Confocal microscopy</subject><subject>Cristae</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Depolarization</subject><subject>Dynamin</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Guanosine triphosphatases</subject><subject>Guanosinetriphosphatase</subject><subject>HeLa Cells</subject><subject>Histamine</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Immunoblotting</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Medicine</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Morphology</subject><subject>Mutation</subject><subject>Optic atrophy</subject><subject>Organelles</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering</subject><subject>Rodents</subject><subject>Scanning microscopy</subject><subject>siRNA</subject><subject>Sodium</subject><subject>Sodium-Calcium Exchanger - metabolism</subject><subject>Transport processes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuEzEUtRCItoE_QDASC1ZJr33Hjr1BqqIClSqVRbu2PH4kjibjYE8qseSXWHbJp_AlnTbTqkWsbPmexz3yIeQdhRnFOT1ep13uTDvbps7PABinSr0gh1QhmwoG-PLJ_YAclbIG4CiFeE0OGFUSUPFDwi9XvvIheNtXKVQX309olbpqE_tkV6lzOZq2Wpg_v__-uqlKXA6OsVu-Ia-CaYt_O54TcvXl9HLxbXp-8fVscXI-tRxEP3XUNw0ExhxXdaAewHDBvTAMakcbBnOr0Ern0De1khgCcKFqFIxxZOhxQj7sdbdtKnpMXDRFUIC1HDATcrZHuGTWepvjxuSfOpmo7x9SXmqT-2hbrxsZgnVBcDCm5oo2sg4MjBMwOKo5DlqfR7dds_HO-q7Ppn0m-nzSxZVepmuNVDI154PAp1Egpx87X3q9icX6tjWdT7uipRIS7xefkI__IP8frt6jbE6lZB8ed6Gg70rwwNJ3JdBjCQba-6c5HkkPv463KtavRA</recordid><startdate>20110929</startdate><enddate>20110929</enddate><creator>Fülöp, László</creator><creator>Szanda, Gergö</creator><creator>Enyedi, Balázs</creator><creator>Várnai, Péter</creator><creator>Spät, András</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110929</creationdate><title>The effect of OPA1 on mitochondrial Ca²⁺ signaling</title><author>Fülöp, László ; Szanda, Gergö ; Enyedi, Balázs ; Várnai, Péter ; Spät, András</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-d1ebb0f22d594f1e00a565e6a204d1b207c93c8dd3eb4983ff0569436225323e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antiporters - metabolism</topic><topic>Apoptosis</topic><topic>Atrophy</topic><topic>Biology</topic><topic>Ca2+/H+-exchanging ATPase</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium - metabolism</topic><topic>Calcium influx</topic><topic>Calcium Signaling - genetics</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium signalling</topic><topic>Cell Line</topic><topic>Confocal</topic><topic>Confocal microscopy</topic><topic>Cristae</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Depolarization</topic><topic>Dynamin</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Guanosine triphosphatases</topic><topic>Guanosinetriphosphatase</topic><topic>HeLa Cells</topic><topic>Histamine</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Immunoblotting</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Medicine</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Morphology</topic><topic>Mutation</topic><topic>Optic atrophy</topic><topic>Organelles</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering</topic><topic>Rodents</topic><topic>Scanning microscopy</topic><topic>siRNA</topic><topic>Sodium</topic><topic>Sodium-Calcium Exchanger - metabolism</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fülöp, László</creatorcontrib><creatorcontrib>Szanda, Gergö</creatorcontrib><creatorcontrib>Enyedi, Balázs</creatorcontrib><creatorcontrib>Várnai, Péter</creatorcontrib><creatorcontrib>Spät, András</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fülöp, László</au><au>Szanda, Gergö</au><au>Enyedi, Balázs</au><au>Várnai, Péter</au><au>Spät, András</au><au>Zhivotovsky, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of OPA1 on mitochondrial Ca²⁺ signaling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-29</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e25199</spage><epage>e25199</epage><pages>e25199-e25199</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca²⁺ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca²⁺ to the transporters in the crista membrane and thus would enhance Ca²⁺ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca²⁺ signals evoked with K⁺ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca²⁺] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca²⁺ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca²⁺ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na⁺/Ca²⁺ and Ca²⁺/H⁺ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca²⁺ metabolism.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21980395</pmid><doi>10.1371/journal.pone.0025199</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-09, Vol.6 (9), p.e25199-e25199
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1309034832
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Antiporters - metabolism
Apoptosis
Atrophy
Biology
Ca2+/H+-exchanging ATPase
Calcium (mitochondrial)
Calcium - metabolism
Calcium influx
Calcium Signaling - genetics
Calcium Signaling - physiology
Calcium signalling
Cell Line
Confocal
Confocal microscopy
Cristae
Cytochrome
Cytochrome c
Depolarization
Dynamin
Fluorescence
Fluorescence resonance energy transfer
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Guanosine triphosphatases
Guanosinetriphosphatase
HeLa Cells
Histamine
Humans
Hypoxia
Immunoblotting
Kinases
Ligands
Medicine
Membrane potential
Membrane Potential, Mitochondrial - genetics
Membrane Potential, Mitochondrial - physiology
Membranes
Metabolism
Microscopy
Microscopy, Confocal
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Morphology
Mutation
Optic atrophy
Organelles
Pharmacology
Physiology
Proteins
Ribonucleic acid
RNA
RNA, Small Interfering
Rodents
Scanning microscopy
siRNA
Sodium
Sodium-Calcium Exchanger - metabolism
Transport processes
title The effect of OPA1 on mitochondrial Ca²⁺ signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20OPA1%20on%20mitochondrial%20Ca%C2%B2%E2%81%BA%20signaling&rft.jtitle=PloS%20one&rft.au=F%C3%BCl%C3%B6p,%20L%C3%A1szl%C3%B3&rft.date=2011-09-29&rft.volume=6&rft.issue=9&rft.spage=e25199&rft.epage=e25199&rft.pages=e25199-e25199&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0025199&rft_dat=%3Cproquest_plos_%3E896830348%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1309034832&rft_id=info:pmid/21980395&rft_doaj_id=oai_doaj_org_article_b8ffcdf650aa4591b84f20ad60436973&rfr_iscdi=true