PfMDR1: mechanisms of transport modulation by functional polymorphisms
ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-09, Vol.6 (9), p.e23875-e23875 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e23875 |
---|---|
container_issue | 9 |
container_start_page | e23875 |
container_title | PloS one |
container_volume | 6 |
creator | Ferreira, Pedro Eduardo Holmgren, Gabrielle Veiga, Maria Isabel Uhlén, Per Kaneko, Akira Gil, José Pedro |
description | ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response. |
doi_str_mv | 10.1371/journal.pone.0023875 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1309033502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476881185</galeid><doaj_id>oai_doaj_org_article_cd80b8e866e44f16966a73e87bac27d6</doaj_id><sourcerecordid>A476881185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c878t-da574cff2a74a852a9712c127b1dfcabc0e2a96495e738d8b60a40da4cb20bee3</originalsourceid><addsrcrecordid>eNqNk1uP0zAQhSMEYpfCP0AQCYnLQ4tv8YUHpNXCQqVFi5bLq-U4TpvixMFOgP57HJouDVoQykOsyXeOnDMzSXIfggXEDD7fuN43yi5a15gFAAhzlt1IjqHAaE4RwDcPzkfJnRA2AGSYU3o7OUJQQEQJO07O3pfvXl3CF2lt9Fo1VahD6sq086oJrfNdWruit6qrXJPm27TsGz2clU1bZ7e18-160NxNbpXKBnNvfM-ST2evP56-nZ9fvFmenpzPNWe8mxcqY0SXJVKMKJ4hJRhEGiKWw6LUKtfAxBolIjMM84LnFCgCCkV0jkBuDJ4lD3e-rXVBjhEECTEQAOMspjBLljuicGojW1_Vym-lU5X8VXB-JZXvKm2N1AUHOTcxEkNICamgVDFsOMuVRqyg0Wu-8wrfTdvnE7ex9CWejMwIFBRGXvyVb70rfov2Qogwghllg_bl-Gd9XptCmyb2wE4tJl-aai1X7pvEkBJKQTR4Mhp497U3oZN1FbSxVjXG9UFyLghhROBIPv0nCbM4MkwQNiTw6A_0-sxHaqVirFVTunhDPZjKk-jCOYQ8i9TiGio-hakrHae4rGJ9Ing2EUSmMz-6lepDkMsPl__PXnyeso8P2LVRtlsHZ_thsMMUJDtQexeCN-VVOyCQwxLu05DDEspxCaPswWErr0T7rcM_AbUyLaY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1309033502</pqid></control><display><type>article</type><title>PfMDR1: mechanisms of transport modulation by functional polymorphisms</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ferreira, Pedro Eduardo ; Holmgren, Gabrielle ; Veiga, Maria Isabel ; Uhlén, Per ; Kaneko, Akira ; Gil, José Pedro</creator><contributor>Costa, Fabio T. M.</contributor><creatorcontrib>Ferreira, Pedro Eduardo ; Holmgren, Gabrielle ; Veiga, Maria Isabel ; Uhlén, Per ; Kaneko, Akira ; Gil, José Pedro ; Costa, Fabio T. M.</creatorcontrib><description>ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023875</identifier><identifier>PMID: 21912647</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ABC transporter ; Adenosine triphosphate ; Algorithms ; Allosteric properties ; Amino acids ; Analysis ; Antimalarials - metabolism ; Antimalarials - pharmacology ; ATP-Binding Cassette, Sub-Family B, Member 1 - chemistry ; ATP-Binding Cassette, Sub-Family B, Member 1 - genetics ; ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ; Bacteria ; Binding ; Binding Sites ; Bioengineering ; Bioinformatics ; Biological Transport ; Biology ; Biophysics ; Biotechnology ; Chemotherapy ; Computer Science ; Computer simulation ; Conservation ; Crystallography ; Crystals ; Docking ; Drug resistance ; Drug Resistance - genetics ; Drugs ; Efflux ; Electric properties ; Enzymes ; Genetic aspects ; Glycoproteins ; Homology ; Humans ; Ligands ; Malaria ; Mammals ; Medicin och hälsovetenskap ; Medicine ; Microbial drug resistance ; Models, Molecular ; Modulation ; Multidrug resistance ; Mutation ; P-Glycoprotein ; Parasites ; Physiological aspects ; Physiological effects ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; Polymorphism, Single Nucleotide ; Protein Conformation ; Protein structure ; Proteins ; Protozoan Proteins - chemistry ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Residues ; Secondary structure ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Structural analysis ; Structural models ; Transport ; Vector-borne diseases</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e23875-e23875</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Ferreira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Ferreira et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c878t-da574cff2a74a852a9712c127b1dfcabc0e2a96495e738d8b60a40da4cb20bee3</citedby><cites>FETCH-LOGICAL-c878t-da574cff2a74a852a9712c127b1dfcabc0e2a96495e738d8b60a40da4cb20bee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21912647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:123215671$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Costa, Fabio T. M.</contributor><creatorcontrib>Ferreira, Pedro Eduardo</creatorcontrib><creatorcontrib>Holmgren, Gabrielle</creatorcontrib><creatorcontrib>Veiga, Maria Isabel</creatorcontrib><creatorcontrib>Uhlén, Per</creatorcontrib><creatorcontrib>Kaneko, Akira</creatorcontrib><creatorcontrib>Gil, José Pedro</creatorcontrib><title>PfMDR1: mechanisms of transport modulation by functional polymorphisms</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response.</description><subject>ABC transporter</subject><subject>Adenosine triphosphate</subject><subject>Algorithms</subject><subject>Allosteric properties</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Antimalarials - metabolism</subject><subject>Antimalarials - pharmacology</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - chemistry</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - genetics</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</subject><subject>Bacteria</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemotherapy</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Docking</subject><subject>Drug resistance</subject><subject>Drug Resistance - genetics</subject><subject>Drugs</subject><subject>Efflux</subject><subject>Electric properties</subject><subject>Enzymes</subject><subject>Genetic aspects</subject><subject>Glycoproteins</subject><subject>Homology</subject><subject>Humans</subject><subject>Ligands</subject><subject>Malaria</subject><subject>Mammals</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Microbial drug resistance</subject><subject>Models, Molecular</subject><subject>Modulation</subject><subject>Multidrug resistance</subject><subject>Mutation</subject><subject>P-Glycoprotein</subject><subject>Parasites</subject><subject>Physiological aspects</subject><subject>Physiological effects</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Residues</subject><subject>Secondary structure</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Structural analysis</subject><subject>Structural models</subject><subject>Transport</subject><subject>Vector-borne diseases</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uP0zAQhSMEYpfCP0AQCYnLQ4tv8YUHpNXCQqVFi5bLq-U4TpvixMFOgP57HJouDVoQykOsyXeOnDMzSXIfggXEDD7fuN43yi5a15gFAAhzlt1IjqHAaE4RwDcPzkfJnRA2AGSYU3o7OUJQQEQJO07O3pfvXl3CF2lt9Fo1VahD6sq086oJrfNdWruit6qrXJPm27TsGz2clU1bZ7e18-160NxNbpXKBnNvfM-ST2evP56-nZ9fvFmenpzPNWe8mxcqY0SXJVKMKJ4hJRhEGiKWw6LUKtfAxBolIjMM84LnFCgCCkV0jkBuDJ4lD3e-rXVBjhEECTEQAOMspjBLljuicGojW1_Vym-lU5X8VXB-JZXvKm2N1AUHOTcxEkNICamgVDFsOMuVRqyg0Wu-8wrfTdvnE7ex9CWejMwIFBRGXvyVb70rfov2Qogwghllg_bl-Gd9XptCmyb2wE4tJl-aai1X7pvEkBJKQTR4Mhp497U3oZN1FbSxVjXG9UFyLghhROBIPv0nCbM4MkwQNiTw6A_0-sxHaqVirFVTunhDPZjKk-jCOYQ8i9TiGio-hakrHae4rGJ9Ing2EUSmMz-6lepDkMsPl__PXnyeso8P2LVRtlsHZ_thsMMUJDtQexeCN-VVOyCQwxLu05DDEspxCaPswWErr0T7rcM_AbUyLaY</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Ferreira, Pedro Eduardo</creator><creator>Holmgren, Gabrielle</creator><creator>Veiga, Maria Isabel</creator><creator>Uhlén, Per</creator><creator>Kaneko, Akira</creator><creator>Gil, José Pedro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20110901</creationdate><title>PfMDR1: mechanisms of transport modulation by functional polymorphisms</title><author>Ferreira, Pedro Eduardo ; Holmgren, Gabrielle ; Veiga, Maria Isabel ; Uhlén, Per ; Kaneko, Akira ; Gil, José Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c878t-da574cff2a74a852a9712c127b1dfcabc0e2a96495e738d8b60a40da4cb20bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ABC transporter</topic><topic>Adenosine triphosphate</topic><topic>Algorithms</topic><topic>Allosteric properties</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Antimalarials - metabolism</topic><topic>Antimalarials - pharmacology</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - chemistry</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - genetics</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</topic><topic>Bacteria</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemotherapy</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Docking</topic><topic>Drug resistance</topic><topic>Drug Resistance - genetics</topic><topic>Drugs</topic><topic>Efflux</topic><topic>Electric properties</topic><topic>Enzymes</topic><topic>Genetic aspects</topic><topic>Glycoproteins</topic><topic>Homology</topic><topic>Humans</topic><topic>Ligands</topic><topic>Malaria</topic><topic>Mammals</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Microbial drug resistance</topic><topic>Models, Molecular</topic><topic>Modulation</topic><topic>Multidrug resistance</topic><topic>Mutation</topic><topic>P-Glycoprotein</topic><topic>Parasites</topic><topic>Physiological aspects</topic><topic>Physiological effects</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Residues</topic><topic>Secondary structure</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Structural analysis</topic><topic>Structural models</topic><topic>Transport</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Pedro Eduardo</creatorcontrib><creatorcontrib>Holmgren, Gabrielle</creatorcontrib><creatorcontrib>Veiga, Maria Isabel</creatorcontrib><creatorcontrib>Uhlén, Per</creatorcontrib><creatorcontrib>Kaneko, Akira</creatorcontrib><creatorcontrib>Gil, José Pedro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Pedro Eduardo</au><au>Holmgren, Gabrielle</au><au>Veiga, Maria Isabel</au><au>Uhlén, Per</au><au>Kaneko, Akira</au><au>Gil, José Pedro</au><au>Costa, Fabio T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PfMDR1: mechanisms of transport modulation by functional polymorphisms</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e23875</spage><epage>e23875</epage><pages>e23875-e23875</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21912647</pmid><doi>10.1371/journal.pone.0023875</doi><tpages>e23875</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-09, Vol.6 (9), p.e23875-e23875 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1309033502 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | ABC transporter Adenosine triphosphate Algorithms Allosteric properties Amino acids Analysis Antimalarials - metabolism Antimalarials - pharmacology ATP-Binding Cassette, Sub-Family B, Member 1 - chemistry ATP-Binding Cassette, Sub-Family B, Member 1 - genetics ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism Bacteria Binding Binding Sites Bioengineering Bioinformatics Biological Transport Biology Biophysics Biotechnology Chemotherapy Computer Science Computer simulation Conservation Crystallography Crystals Docking Drug resistance Drug Resistance - genetics Drugs Efflux Electric properties Enzymes Genetic aspects Glycoproteins Homology Humans Ligands Malaria Mammals Medicin och hälsovetenskap Medicine Microbial drug resistance Models, Molecular Modulation Multidrug resistance Mutation P-Glycoprotein Parasites Physiological aspects Physiological effects Plasmodium falciparum - drug effects Plasmodium falciparum - genetics Plasmodium falciparum - metabolism Polymorphism, Single Nucleotide Protein Conformation Protein structure Proteins Protozoan Proteins - chemistry Protozoan Proteins - genetics Protozoan Proteins - metabolism Residues Secondary structure Single nucleotide polymorphisms Single-nucleotide polymorphism Structural analysis Structural models Transport Vector-borne diseases |
title | PfMDR1: mechanisms of transport modulation by functional polymorphisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T01%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PfMDR1:%20mechanisms%20of%20transport%20modulation%20by%20functional%20polymorphisms&rft.jtitle=PloS%20one&rft.au=Ferreira,%20Pedro%20Eduardo&rft.date=2011-09-01&rft.volume=6&rft.issue=9&rft.spage=e23875&rft.epage=e23875&rft.pages=e23875-e23875&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023875&rft_dat=%3Cgale_plos_%3EA476881185%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1309033502&rft_id=info:pmid/21912647&rft_galeid=A476881185&rft_doaj_id=oai_doaj_org_article_cd80b8e866e44f16966a73e87bac27d6&rfr_iscdi=true |