Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93

The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for >45,000 polymorphisms, includi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-09, Vol.6 (9), p.e25211
Hauptverfasser: Esberg, Anders, Muller, Ludo A H, McCusker, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e25211
container_title PloS one
container_volume 6
creator Esberg, Anders
Muller, Ludo A H
McCusker, John H
description The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for >45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly.
doi_str_mv 10.1371/journal.pone.0025211
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308813243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476877686</galeid><doaj_id>oai_doaj_org_article_a00a34dfa50940e8b7e6a23bc47cdf7f</doaj_id><sourcerecordid>A476877686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c762t-64e8ab9cba7171cdd22e0bcd5577570f4c55eff4538de5420800c0e5f5d61e613</originalsourceid><addsrcrecordid>eNqNk-9r1DAYx4sobk7_A9GCIAjemTS_2jfCcc55MBk43duQpk_vcrRNl6Sb--_N7bpxBQUJISHP5_slz8PzJMlrjOaYCPxpawfXqWbe2w7mCGUsw_hJcowLks14hsjTg_tR8sL7LUKM5Jw_T44yXHBOmThO-jPobGt06oMbdBgcpLZOVVel610AZremgtSBtm1pOhWM7VLTpWED6aXSeqOcbe80-FSDgxvjjYqBLM-Xae9stDDButR426gA6en3grxMntWq8fBqPE-SX19Pfy6_zc4vzlbLxflMC56FGaeQq7LQpRJYYF1VWQao1BVjQjCBaqoZg7qmMaMKGM1QjpBGwGpWcQwck5Pk7d63b6yXY7G8xATlOSYZJZFY7YnKqq3snWmVu5NWGXn_YN1aKheMbkAqhBShVa0YKiiCvBTAVUZKTYWualFHr497L38L_VBO3L6Yq8W929AOkhasoBH_PH5uKFuoNHTBqWaimkY6s5FreyMJzhHlKBq8Gw2cvR7Ah39kOFJrFZMwXW2jmW6N13JBBc9F3DxS879QcVUQGyN2V23i-0TwYSKITIDfYa0G7-Xq8sf_sxdXU_b9AbsB1YRN7Jxh13R-CtI9qJ313kH9WDmM5G44Hqohd8Mhx-GIsjeHVX8UPUwD-QOiggtP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308813243</pqid></control><display><type>article</type><title>Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Esberg, Anders ; Muller, Ludo A H ; McCusker, John H</creator><contributor>Lichten, Michael</contributor><creatorcontrib>Esberg, Anders ; Muller, Ludo A H ; McCusker, John H ; Lichten, Michael</creatorcontrib><description>The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for &gt;45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0025211</identifier><identifier>PMID: 21966457</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Cell division ; Chromosomes ; Cloning ; Conservation ; Crossovers ; Deoxyribonucleic acid ; DNA ; Gene conversion ; Genes ; Genetic aspects ; Genetic markers ; Genetic polymorphisms ; Genetic recombination ; Genetic research ; Genome, Fungal - genetics ; Genomes ; Genomics ; Heterozygote ; Hybridization ; Laboratories ; Meiosis ; Polymorphism, Genetic - genetics ; Recombination ; Recombination hot spots ; Recombination, Genetic - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces paradoxus ; Tetrads ; Yeast</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e25211</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Esberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Esberg et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c762t-64e8ab9cba7171cdd22e0bcd5577570f4c55eff4538de5420800c0e5f5d61e613</citedby><cites>FETCH-LOGICAL-c762t-64e8ab9cba7171cdd22e0bcd5577570f4c55eff4538de5420800c0e5f5d61e613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180460/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180460/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21966457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49594$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Lichten, Michael</contributor><creatorcontrib>Esberg, Anders</creatorcontrib><creatorcontrib>Muller, Ludo A H</creatorcontrib><creatorcontrib>McCusker, John H</creatorcontrib><title>Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for &gt;45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly.</description><subject>Biology</subject><subject>Cell division</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Conservation</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Gene conversion</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic markers</subject><subject>Genetic polymorphisms</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heterozygote</subject><subject>Hybridization</subject><subject>Laboratories</subject><subject>Meiosis</subject><subject>Polymorphism, Genetic - genetics</subject><subject>Recombination</subject><subject>Recombination hot spots</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces paradoxus</subject><subject>Tetrads</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk-9r1DAYx4sobk7_A9GCIAjemTS_2jfCcc55MBk43duQpk_vcrRNl6Sb--_N7bpxBQUJISHP5_slz8PzJMlrjOaYCPxpawfXqWbe2w7mCGUsw_hJcowLks14hsjTg_tR8sL7LUKM5Jw_T44yXHBOmThO-jPobGt06oMbdBgcpLZOVVel610AZremgtSBtm1pOhWM7VLTpWED6aXSeqOcbe80-FSDgxvjjYqBLM-Xae9stDDButR426gA6en3grxMntWq8fBqPE-SX19Pfy6_zc4vzlbLxflMC56FGaeQq7LQpRJYYF1VWQao1BVjQjCBaqoZg7qmMaMKGM1QjpBGwGpWcQwck5Pk7d63b6yXY7G8xATlOSYZJZFY7YnKqq3snWmVu5NWGXn_YN1aKheMbkAqhBShVa0YKiiCvBTAVUZKTYWualFHr497L38L_VBO3L6Yq8W929AOkhasoBH_PH5uKFuoNHTBqWaimkY6s5FreyMJzhHlKBq8Gw2cvR7Ah39kOFJrFZMwXW2jmW6N13JBBc9F3DxS879QcVUQGyN2V23i-0TwYSKITIDfYa0G7-Xq8sf_sxdXU_b9AbsB1YRN7Jxh13R-CtI9qJ313kH9WDmM5G44Hqohd8Mhx-GIsjeHVX8UPUwD-QOiggtP</recordid><startdate>20110926</startdate><enddate>20110926</enddate><creator>Esberg, Anders</creator><creator>Muller, Ludo A H</creator><creator>McCusker, John H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>DOA</scope></search><sort><creationdate>20110926</creationdate><title>Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93</title><author>Esberg, Anders ; Muller, Ludo A H ; McCusker, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c762t-64e8ab9cba7171cdd22e0bcd5577570f4c55eff4538de5420800c0e5f5d61e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Cell division</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Conservation</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Gene conversion</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic markers</topic><topic>Genetic polymorphisms</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heterozygote</topic><topic>Hybridization</topic><topic>Laboratories</topic><topic>Meiosis</topic><topic>Polymorphism, Genetic - genetics</topic><topic>Recombination</topic><topic>Recombination hot spots</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces paradoxus</topic><topic>Tetrads</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esberg, Anders</creatorcontrib><creatorcontrib>Muller, Ludo A H</creatorcontrib><creatorcontrib>McCusker, John H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esberg, Anders</au><au>Muller, Ludo A H</au><au>McCusker, John H</au><au>Lichten, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-26</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e25211</spage><pages>e25211-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for &gt;45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21966457</pmid><doi>10.1371/journal.pone.0025211</doi><tpages>e25211</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-09, Vol.6 (9), p.e25211
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1308813243
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology
Cell division
Chromosomes
Cloning
Conservation
Crossovers
Deoxyribonucleic acid
DNA
Gene conversion
Genes
Genetic aspects
Genetic markers
Genetic polymorphisms
Genetic recombination
Genetic research
Genome, Fungal - genetics
Genomes
Genomics
Heterozygote
Hybridization
Laboratories
Meiosis
Polymorphism, Genetic - genetics
Recombination
Recombination hot spots
Recombination, Genetic - genetics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces paradoxus
Tetrads
Yeast
title Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20structure%20of%20and%20genome-wide%20recombination%20in%20the%20Saccharomyces%20cerevisiae%20S288C%20progenitor%20isolate%20EM93&rft.jtitle=PloS%20one&rft.au=Esberg,%20Anders&rft.date=2011-09-26&rft.volume=6&rft.issue=9&rft.spage=e25211&rft.pages=e25211-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0025211&rft_dat=%3Cgale_plos_%3EA476877686%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308813243&rft_id=info:pmid/21966457&rft_galeid=A476877686&rft_doaj_id=oai_doaj_org_article_a00a34dfa50940e8b7e6a23bc47cdf7f&rfr_iscdi=true