A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes
Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from t...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-09, Vol.6 (9), p.e24835-e24835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e24835 |
---|---|
container_issue | 9 |
container_start_page | e24835 |
container_title | PloS one |
container_volume | 6 |
creator | Chakraborty, Sangita A Simpson, Robert T Grigoryev, Sergei A |
description | Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes. |
doi_str_mv | 10.1371/journal.pone.0024835 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308639859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476879905</galeid><doaj_id>oai_doaj_org_article_881c8265750f44ea8878d9a352961522</doaj_id><sourcerecordid>A476879905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-6f1e286e0b5512a7ebbf5e89abe7fc032bf7001924c4ffeccc861ef2d288e9b93</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguLFjPnoR3IjDIsfAwsLrnob0vR0mqFNxiQdnJ_gvzbd6S5T2QsppKV53ve078lJkpcYLTEt8YetHZyR3XJnDSwRIhmj-aPkHHNKFgVB9PHJ81nyzPstQjllRfE0OSOYZ7wssvPkzyr12mw6SFsI4Kxqne1l0Cat7GBq6Q4pdNCDCanud9aDT-Oqg7ZmoU0NO4hL3JQmaK87MCq6pVIFvdfhkEafG6lUK6PrQUWxAgf7SEpIe230bTnrbQ_-efKkkZ2HF9P9Ivnx-dP3y6-Lq-sv68vV1UIVHIdF0WAgrABU5TkmsoSqanJgXFZQNgpRUjUlQpiTTGVNA0opVmBoSE0YA15xepG8PvruOuvFlKIXmCJWUM7ykVgfidrKrdg53ccYhJVa3L6wbiOkC1p1IBjDipEiL3PUZBlIxkpWc0lzwgucExK9Pk7VhqqHWsWsnOxmpvMdo1uxsXtBcRlbVEaDd5OBs78G8EH02ivoOmnADl4wnjFMMcsj-eYf8uGfm6iNjN-vTWNjWTV6ilVWFqzkHI1eyweoeNXQaxVPXBN7PRe8nwkiE-B32MjBe7G--fb_7PXPOfv2hG1BdqH1thvGA-jnYHYElbPeO2juM8ZIjANzl4YYB0ZMAxNlr077cy-6mxD6Fy9lFO0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308639859</pqid></control><display><type>article</type><title>A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chakraborty, Sangita A ; Simpson, Robert T ; Grigoryev, Sergei A</creator><creatorcontrib>Chakraborty, Sangita A ; Simpson, Robert T ; Grigoryev, Sergei A</creatorcontrib><description>Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0024835</identifier><identifier>PMID: 21949764</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Baking yeast ; Base Sequence ; Biochemistry ; Biology ; Boundary element method ; Chromatin ; Chromosomes, Fungal ; Circular DNA ; Circularity ; Deoxyribonucleic acid ; DNA ; DNA, Circular - genetics ; Gene Silencing ; Genes ; Genes, Reporter - genetics ; Genetic aspects ; Genetic engineering ; Genomes ; Genomics ; Hershey, Milton Snavely ; Heterochromatin ; Heterochromatin - genetics ; Insulator Elements - genetics ; Mathematical analysis ; Models, Biological ; Molecular biology ; Regulatory sequences ; Reporter gene ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Silencer Elements, Transcriptional - genetics ; Silencers ; Spreading ; Telomerase ; Topology ; Transcription (Genetics) ; Yeast</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e24835-e24835</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Chakraborty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Chakraborty et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-6f1e286e0b5512a7ebbf5e89abe7fc032bf7001924c4ffeccc861ef2d288e9b93</citedby><cites>FETCH-LOGICAL-c691t-6f1e286e0b5512a7ebbf5e89abe7fc032bf7001924c4ffeccc861ef2d288e9b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21949764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Sangita A</creatorcontrib><creatorcontrib>Simpson, Robert T</creatorcontrib><creatorcontrib>Grigoryev, Sergei A</creatorcontrib><title>A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.</description><subject>Baking yeast</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Boundary element method</subject><subject>Chromatin</subject><subject>Chromosomes, Fungal</subject><subject>Circular DNA</subject><subject>Circularity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Circular - genetics</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genes, Reporter - genetics</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hershey, Milton Snavely</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Insulator Elements - genetics</subject><subject>Mathematical analysis</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Regulatory sequences</subject><subject>Reporter gene</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Silencer Elements, Transcriptional - genetics</subject><subject>Silencers</subject><subject>Spreading</subject><subject>Telomerase</subject><subject>Topology</subject><subject>Transcription (Genetics)</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguLFjPnoR3IjDIsfAwsLrnob0vR0mqFNxiQdnJ_gvzbd6S5T2QsppKV53ve078lJkpcYLTEt8YetHZyR3XJnDSwRIhmj-aPkHHNKFgVB9PHJ81nyzPstQjllRfE0OSOYZ7wssvPkzyr12mw6SFsI4Kxqne1l0Cat7GBq6Q4pdNCDCanud9aDT-Oqg7ZmoU0NO4hL3JQmaK87MCq6pVIFvdfhkEafG6lUK6PrQUWxAgf7SEpIe230bTnrbQ_-efKkkZ2HF9P9Ivnx-dP3y6-Lq-sv68vV1UIVHIdF0WAgrABU5TkmsoSqanJgXFZQNgpRUjUlQpiTTGVNA0opVmBoSE0YA15xepG8PvruOuvFlKIXmCJWUM7ykVgfidrKrdg53ccYhJVa3L6wbiOkC1p1IBjDipEiL3PUZBlIxkpWc0lzwgucExK9Pk7VhqqHWsWsnOxmpvMdo1uxsXtBcRlbVEaDd5OBs78G8EH02ivoOmnADl4wnjFMMcsj-eYf8uGfm6iNjN-vTWNjWTV6ilVWFqzkHI1eyweoeNXQaxVPXBN7PRe8nwkiE-B32MjBe7G--fb_7PXPOfv2hG1BdqH1thvGA-jnYHYElbPeO2juM8ZIjANzl4YYB0ZMAxNlr077cy-6mxD6Fy9lFO0</recordid><startdate>20110916</startdate><enddate>20110916</enddate><creator>Chakraborty, Sangita A</creator><creator>Simpson, Robert T</creator><creator>Grigoryev, Sergei A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110916</creationdate><title>A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes</title><author>Chakraborty, Sangita A ; Simpson, Robert T ; Grigoryev, Sergei A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-6f1e286e0b5512a7ebbf5e89abe7fc032bf7001924c4ffeccc861ef2d288e9b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Baking yeast</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Boundary element method</topic><topic>Chromatin</topic><topic>Chromosomes, Fungal</topic><topic>Circular DNA</topic><topic>Circularity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Circular - genetics</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genes, Reporter - genetics</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hershey, Milton Snavely</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Insulator Elements - genetics</topic><topic>Mathematical analysis</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Regulatory sequences</topic><topic>Reporter gene</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Silencer Elements, Transcriptional - genetics</topic><topic>Silencers</topic><topic>Spreading</topic><topic>Telomerase</topic><topic>Topology</topic><topic>Transcription (Genetics)</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Sangita A</creatorcontrib><creatorcontrib>Simpson, Robert T</creatorcontrib><creatorcontrib>Grigoryev, Sergei A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Sangita A</au><au>Simpson, Robert T</au><au>Grigoryev, Sergei A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-16</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e24835</spage><epage>e24835</epage><pages>e24835-e24835</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21949764</pmid><doi>10.1371/journal.pone.0024835</doi><tpages>e24835</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-09, Vol.6 (9), p.e24835-e24835 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1308639859 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Baking yeast Base Sequence Biochemistry Biology Boundary element method Chromatin Chromosomes, Fungal Circular DNA Circularity Deoxyribonucleic acid DNA DNA, Circular - genetics Gene Silencing Genes Genes, Reporter - genetics Genetic aspects Genetic engineering Genomes Genomics Hershey, Milton Snavely Heterochromatin Heterochromatin - genetics Insulator Elements - genetics Mathematical analysis Models, Biological Molecular biology Regulatory sequences Reporter gene Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - metabolism Silencer Elements, Transcriptional - genetics Silencers Spreading Telomerase Topology Transcription (Genetics) Yeast |
title | A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20single%20heterochromatin%20boundary%20element%20imposes%20position-independent%20antisilencing%20activity%20in%20Saccharomyces%20cerevisiae%20minichromosomes&rft.jtitle=PloS%20one&rft.au=Chakraborty,%20Sangita%20A&rft.date=2011-09-16&rft.volume=6&rft.issue=9&rft.spage=e24835&rft.epage=e24835&rft.pages=e24835-e24835&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0024835&rft_dat=%3Cgale_plos_%3EA476879905%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308639859&rft_id=info:pmid/21949764&rft_galeid=A476879905&rft_doaj_id=oai_doaj_org_article_881c8265750f44ea8878d9a352961522&rfr_iscdi=true |