Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST
Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxi...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-09, Vol.6 (9), p.e23965-e23965 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e23965 |
---|---|
container_issue | 9 |
container_start_page | e23965 |
container_title | PloS one |
container_volume | 6 |
creator | Yang, Der-Chih Yang, Muh-Hwa Tsai, Chih-Chien Huang, Tung-Fu Chen, Yau-Hung Hung, Shih-Chieh |
description | Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.
Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.
Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction. |
doi_str_mv | 10.1371/journal.pone.0023965 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308527621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476880586</galeid><doaj_id>oai_doaj_org_article_f3cfc2a6e2b24a5e9647733d385943b8</doaj_id><sourcerecordid>A476880586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBYQgJx2MUfseNckKoK6EoVldotcLMcx0m8SuKt7aDuv8dh02qDekA-2Jp55h17xpMkrxFcIpKhTxs7uF62y63t9RJCTHJGnyTHKCd4wTAkTw_OR8kL7zcQUsIZe54c4ehBjMDjxJzvtvbOSGD6xhQmeGB90LbWvfbGRytohk72oNNe96rZdbIFEeiA0m3rQWicHeoGlMZpFYDT9dDKYGwPbAWubr7_wqDYgfXP1fX6ZfKskq3Xr6b9JLn5-mV9dr64uPy2Oju9WCiWo7DIoFJFyjKseJpxRAuoqiovS8pTSTRSaaUo1IzSnNASKsxRgQtYFGlZUUUqRU6St3vdbWu9mKrkBSKQU5wxjCKx2hOllRuxdaaTbiesNOKvwbpaSBeMarWoiKoUlkzjAqeS6pylWUZISTjNU1LwqPV5yjYUnS6V7oOT7Ux07ulNI2r7WxCUQcxHgQ-TgLO3g_ZBdMaPxZW9toMXPPYwRyxlkXz3D_n44yaqlvH-pq9sTKtGTXGaZoxzSPmotXyEiqvUnVHxR1Um2mcBH2cBkQn6LtRy8F6srq_-n738MWffH7CNlm1ovG2H8Q_5OZjuQeWs905XDzVGUIwDcV8NMQ6EmAYihr057M9D0P0EkD8VrQZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308527621</pqid></control><display><type>article</type><title>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Der-Chih ; Yang, Muh-Hwa ; Tsai, Chih-Chien ; Huang, Tung-Fu ; Chen, Yau-Hung ; Hung, Shih-Chieh</creator><contributor>Milstone, David S.</contributor><creatorcontrib>Yang, Der-Chih ; Yang, Muh-Hwa ; Tsai, Chih-Chien ; Huang, Tung-Fu ; Chen, Yau-Hung ; Hung, Shih-Chieh ; Milstone, David S.</creatorcontrib><description>Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.
Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.
Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023965</identifier><identifier>PMID: 21931630</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Angiogenesis ; Arthritis ; Biocompatibility ; Biology ; Biomedical materials ; Bone growth ; Bone healing ; Bone loss ; Bone marrow ; Bone morphogenetic protein 2 ; Bone morphogenetic proteins ; Cbfa-1 protein ; Cell Differentiation - genetics ; Cell Hypoxia - genetics ; Clinical medicine ; Core Binding Factor Alpha 1 Subunit - genetics ; Differentiation ; Down-Regulation - genetics ; Education ; Fibroblasts ; Growth factors ; Hematology ; Hospitals ; Humans ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Medical research ; Medicine ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Mesenchyme ; Metastasis ; Mineralization ; Osteoblastogenesis ; Osteoblasts ; Osteogenesis ; Osteogenesis - genetics ; Promoter Regions, Genetic - genetics ; Rodents ; Signal transduction ; Signaling ; Stem cells ; Transcription ; Transcription factors ; Twist-Related Protein 1 - metabolism</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e23965-e23965</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Yang et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</citedby><cites>FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21931630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Milstone, David S.</contributor><creatorcontrib>Yang, Der-Chih</creatorcontrib><creatorcontrib>Yang, Muh-Hwa</creatorcontrib><creatorcontrib>Tsai, Chih-Chien</creatorcontrib><creatorcontrib>Huang, Tung-Fu</creatorcontrib><creatorcontrib>Chen, Yau-Hung</creatorcontrib><creatorcontrib>Hung, Shih-Chieh</creatorcontrib><title>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.
Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.
Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.</description><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Arthritis</subject><subject>Biocompatibility</subject><subject>Biology</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone loss</subject><subject>Bone marrow</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone morphogenetic proteins</subject><subject>Cbfa-1 protein</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Hypoxia - genetics</subject><subject>Clinical medicine</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Differentiation</subject><subject>Down-Regulation - genetics</subject><subject>Education</subject><subject>Fibroblasts</subject><subject>Growth factors</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Metastasis</subject><subject>Mineralization</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteogenesis - genetics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Twist-Related Protein 1 - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBYQgJx2MUfseNckKoK6EoVldotcLMcx0m8SuKt7aDuv8dh02qDekA-2Jp55h17xpMkrxFcIpKhTxs7uF62y63t9RJCTHJGnyTHKCd4wTAkTw_OR8kL7zcQUsIZe54c4ehBjMDjxJzvtvbOSGD6xhQmeGB90LbWvfbGRytohk72oNNe96rZdbIFEeiA0m3rQWicHeoGlMZpFYDT9dDKYGwPbAWubr7_wqDYgfXP1fX6ZfKskq3Xr6b9JLn5-mV9dr64uPy2Oju9WCiWo7DIoFJFyjKseJpxRAuoqiovS8pTSTRSaaUo1IzSnNASKsxRgQtYFGlZUUUqRU6St3vdbWu9mKrkBSKQU5wxjCKx2hOllRuxdaaTbiesNOKvwbpaSBeMarWoiKoUlkzjAqeS6pylWUZISTjNU1LwqPV5yjYUnS6V7oOT7Ux07ulNI2r7WxCUQcxHgQ-TgLO3g_ZBdMaPxZW9toMXPPYwRyxlkXz3D_n44yaqlvH-pq9sTKtGTXGaZoxzSPmotXyEiqvUnVHxR1Um2mcBH2cBkQn6LtRy8F6srq_-n738MWffH7CNlm1ovG2H8Q_5OZjuQeWs905XDzVGUIwDcV8NMQ6EmAYihr057M9D0P0EkD8VrQZU</recordid><startdate>20110909</startdate><enddate>20110909</enddate><creator>Yang, Der-Chih</creator><creator>Yang, Muh-Hwa</creator><creator>Tsai, Chih-Chien</creator><creator>Huang, Tung-Fu</creator><creator>Chen, Yau-Hung</creator><creator>Hung, Shih-Chieh</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110909</creationdate><title>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</title><author>Yang, Der-Chih ; Yang, Muh-Hwa ; Tsai, Chih-Chien ; Huang, Tung-Fu ; Chen, Yau-Hung ; Hung, Shih-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Arthritis</topic><topic>Biocompatibility</topic><topic>Biology</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone loss</topic><topic>Bone marrow</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone morphogenetic proteins</topic><topic>Cbfa-1 protein</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Hypoxia - genetics</topic><topic>Clinical medicine</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Differentiation</topic><topic>Down-Regulation - genetics</topic><topic>Education</topic><topic>Fibroblasts</topic><topic>Growth factors</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Metastasis</topic><topic>Mineralization</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteogenesis - genetics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Twist-Related Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Der-Chih</creatorcontrib><creatorcontrib>Yang, Muh-Hwa</creatorcontrib><creatorcontrib>Tsai, Chih-Chien</creatorcontrib><creatorcontrib>Huang, Tung-Fu</creatorcontrib><creatorcontrib>Chen, Yau-Hung</creatorcontrib><creatorcontrib>Hung, Shih-Chieh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Der-Chih</au><au>Yang, Muh-Hwa</au><au>Tsai, Chih-Chien</au><au>Huang, Tung-Fu</au><au>Chen, Yau-Hung</au><au>Hung, Shih-Chieh</au><au>Milstone, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-09</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e23965</spage><epage>e23965</epage><pages>e23965-e23965</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.
Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.
Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21931630</pmid><doi>10.1371/journal.pone.0023965</doi><tpages>e23965</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-09, Vol.6 (9), p.e23965-e23965 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1308527621 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Angiogenesis Arthritis Biocompatibility Biology Biomedical materials Bone growth Bone healing Bone loss Bone marrow Bone morphogenetic protein 2 Bone morphogenetic proteins Cbfa-1 protein Cell Differentiation - genetics Cell Hypoxia - genetics Clinical medicine Core Binding Factor Alpha 1 Subunit - genetics Differentiation Down-Regulation - genetics Education Fibroblasts Growth factors Hematology Hospitals Humans Hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Medical research Medicine Mesenchymal stem cells Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Mesenchyme Metastasis Mineralization Osteoblastogenesis Osteoblasts Osteogenesis Osteogenesis - genetics Promoter Regions, Genetic - genetics Rodents Signal transduction Signaling Stem cells Transcription Transcription factors Twist-Related Protein 1 - metabolism |
title | Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20inhibits%20osteogenesis%20in%20human%20mesenchymal%20stem%20cells%20through%20direct%20regulation%20of%20RUNX2%20by%20TWIST&rft.jtitle=PloS%20one&rft.au=Yang,%20Der-Chih&rft.date=2011-09-09&rft.volume=6&rft.issue=9&rft.spage=e23965&rft.epage=e23965&rft.pages=e23965-e23965&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023965&rft_dat=%3Cgale_plos_%3EA476880586%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308527621&rft_id=info:pmid/21931630&rft_galeid=A476880586&rft_doaj_id=oai_doaj_org_article_f3cfc2a6e2b24a5e9647733d385943b8&rfr_iscdi=true |