Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST

Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-09, Vol.6 (9), p.e23965-e23965
Hauptverfasser: Yang, Der-Chih, Yang, Muh-Hwa, Tsai, Chih-Chien, Huang, Tung-Fu, Chen, Yau-Hung, Hung, Shih-Chieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e23965
container_issue 9
container_start_page e23965
container_title PloS one
container_volume 6
creator Yang, Der-Chih
Yang, Muh-Hwa
Tsai, Chih-Chien
Huang, Tung-Fu
Chen, Yau-Hung
Hung, Shih-Chieh
description Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation. Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs. Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.
doi_str_mv 10.1371/journal.pone.0023965
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308527621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476880586</galeid><doaj_id>oai_doaj_org_article_f3cfc2a6e2b24a5e9647733d385943b8</doaj_id><sourcerecordid>A476880586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBYQgJx2MUfseNckKoK6EoVldotcLMcx0m8SuKt7aDuv8dh02qDekA-2Jp55h17xpMkrxFcIpKhTxs7uF62y63t9RJCTHJGnyTHKCd4wTAkTw_OR8kL7zcQUsIZe54c4ehBjMDjxJzvtvbOSGD6xhQmeGB90LbWvfbGRytohk72oNNe96rZdbIFEeiA0m3rQWicHeoGlMZpFYDT9dDKYGwPbAWubr7_wqDYgfXP1fX6ZfKskq3Xr6b9JLn5-mV9dr64uPy2Oju9WCiWo7DIoFJFyjKseJpxRAuoqiovS8pTSTRSaaUo1IzSnNASKsxRgQtYFGlZUUUqRU6St3vdbWu9mKrkBSKQU5wxjCKx2hOllRuxdaaTbiesNOKvwbpaSBeMarWoiKoUlkzjAqeS6pylWUZISTjNU1LwqPV5yjYUnS6V7oOT7Ux07ulNI2r7WxCUQcxHgQ-TgLO3g_ZBdMaPxZW9toMXPPYwRyxlkXz3D_n44yaqlvH-pq9sTKtGTXGaZoxzSPmotXyEiqvUnVHxR1Um2mcBH2cBkQn6LtRy8F6srq_-n738MWffH7CNlm1ovG2H8Q_5OZjuQeWs905XDzVGUIwDcV8NMQ6EmAYihr057M9D0P0EkD8VrQZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308527621</pqid></control><display><type>article</type><title>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Der-Chih ; Yang, Muh-Hwa ; Tsai, Chih-Chien ; Huang, Tung-Fu ; Chen, Yau-Hung ; Hung, Shih-Chieh</creator><contributor>Milstone, David S.</contributor><creatorcontrib>Yang, Der-Chih ; Yang, Muh-Hwa ; Tsai, Chih-Chien ; Huang, Tung-Fu ; Chen, Yau-Hung ; Hung, Shih-Chieh ; Milstone, David S.</creatorcontrib><description>Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation. Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs. Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023965</identifier><identifier>PMID: 21931630</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Angiogenesis ; Arthritis ; Biocompatibility ; Biology ; Biomedical materials ; Bone growth ; Bone healing ; Bone loss ; Bone marrow ; Bone morphogenetic protein 2 ; Bone morphogenetic proteins ; Cbfa-1 protein ; Cell Differentiation - genetics ; Cell Hypoxia - genetics ; Clinical medicine ; Core Binding Factor Alpha 1 Subunit - genetics ; Differentiation ; Down-Regulation - genetics ; Education ; Fibroblasts ; Growth factors ; Hematology ; Hospitals ; Humans ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Medical research ; Medicine ; Mesenchymal stem cells ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; Mesenchyme ; Metastasis ; Mineralization ; Osteoblastogenesis ; Osteoblasts ; Osteogenesis ; Osteogenesis - genetics ; Promoter Regions, Genetic - genetics ; Rodents ; Signal transduction ; Signaling ; Stem cells ; Transcription ; Transcription factors ; Twist-Related Protein 1 - metabolism</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e23965-e23965</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Yang et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</citedby><cites>FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21931630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Milstone, David S.</contributor><creatorcontrib>Yang, Der-Chih</creatorcontrib><creatorcontrib>Yang, Muh-Hwa</creatorcontrib><creatorcontrib>Tsai, Chih-Chien</creatorcontrib><creatorcontrib>Huang, Tung-Fu</creatorcontrib><creatorcontrib>Chen, Yau-Hung</creatorcontrib><creatorcontrib>Hung, Shih-Chieh</creatorcontrib><title>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation. Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs. Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.</description><subject>Analysis</subject><subject>Angiogenesis</subject><subject>Arthritis</subject><subject>Biocompatibility</subject><subject>Biology</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone loss</subject><subject>Bone marrow</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone morphogenetic proteins</subject><subject>Cbfa-1 protein</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Hypoxia - genetics</subject><subject>Clinical medicine</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Differentiation</subject><subject>Down-Regulation - genetics</subject><subject>Education</subject><subject>Fibroblasts</subject><subject>Growth factors</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Metastasis</subject><subject>Mineralization</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteogenesis - genetics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Twist-Related Protein 1 - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBYQgJx2MUfseNckKoK6EoVldotcLMcx0m8SuKt7aDuv8dh02qDekA-2Jp55h17xpMkrxFcIpKhTxs7uF62y63t9RJCTHJGnyTHKCd4wTAkTw_OR8kL7zcQUsIZe54c4ehBjMDjxJzvtvbOSGD6xhQmeGB90LbWvfbGRytohk72oNNe96rZdbIFEeiA0m3rQWicHeoGlMZpFYDT9dDKYGwPbAWubr7_wqDYgfXP1fX6ZfKskq3Xr6b9JLn5-mV9dr64uPy2Oju9WCiWo7DIoFJFyjKseJpxRAuoqiovS8pTSTRSaaUo1IzSnNASKsxRgQtYFGlZUUUqRU6St3vdbWu9mKrkBSKQU5wxjCKx2hOllRuxdaaTbiesNOKvwbpaSBeMarWoiKoUlkzjAqeS6pylWUZISTjNU1LwqPV5yjYUnS6V7oOT7Ux07ulNI2r7WxCUQcxHgQ-TgLO3g_ZBdMaPxZW9toMXPPYwRyxlkXz3D_n44yaqlvH-pq9sTKtGTXGaZoxzSPmotXyEiqvUnVHxR1Um2mcBH2cBkQn6LtRy8F6srq_-n738MWffH7CNlm1ovG2H8Q_5OZjuQeWs905XDzVGUIwDcV8NMQ6EmAYihr057M9D0P0EkD8VrQZU</recordid><startdate>20110909</startdate><enddate>20110909</enddate><creator>Yang, Der-Chih</creator><creator>Yang, Muh-Hwa</creator><creator>Tsai, Chih-Chien</creator><creator>Huang, Tung-Fu</creator><creator>Chen, Yau-Hung</creator><creator>Hung, Shih-Chieh</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110909</creationdate><title>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</title><author>Yang, Der-Chih ; Yang, Muh-Hwa ; Tsai, Chih-Chien ; Huang, Tung-Fu ; Chen, Yau-Hung ; Hung, Shih-Chieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-70ccb4672c847815b0cff9dd584a3e1c4fc50e655935d0c281b2b0bb4df5c3fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Angiogenesis</topic><topic>Arthritis</topic><topic>Biocompatibility</topic><topic>Biology</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone loss</topic><topic>Bone marrow</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone morphogenetic proteins</topic><topic>Cbfa-1 protein</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Hypoxia - genetics</topic><topic>Clinical medicine</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Differentiation</topic><topic>Down-Regulation - genetics</topic><topic>Education</topic><topic>Fibroblasts</topic><topic>Growth factors</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Metastasis</topic><topic>Mineralization</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteogenesis - genetics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Twist-Related Protein 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Der-Chih</creatorcontrib><creatorcontrib>Yang, Muh-Hwa</creatorcontrib><creatorcontrib>Tsai, Chih-Chien</creatorcontrib><creatorcontrib>Huang, Tung-Fu</creatorcontrib><creatorcontrib>Chen, Yau-Hung</creatorcontrib><creatorcontrib>Hung, Shih-Chieh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Der-Chih</au><au>Yang, Muh-Hwa</au><au>Tsai, Chih-Chien</au><au>Huang, Tung-Fu</au><au>Chen, Yau-Hung</au><au>Hung, Shih-Chieh</au><au>Milstone, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-09</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e23965</spage><epage>e23965</epage><pages>e23965-e23965</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation. Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs. Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21931630</pmid><doi>10.1371/journal.pone.0023965</doi><tpages>e23965</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-09, Vol.6 (9), p.e23965-e23965
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1308527621
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Angiogenesis
Arthritis
Biocompatibility
Biology
Biomedical materials
Bone growth
Bone healing
Bone loss
Bone marrow
Bone morphogenetic protein 2
Bone morphogenetic proteins
Cbfa-1 protein
Cell Differentiation - genetics
Cell Hypoxia - genetics
Clinical medicine
Core Binding Factor Alpha 1 Subunit - genetics
Differentiation
Down-Regulation - genetics
Education
Fibroblasts
Growth factors
Hematology
Hospitals
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Medical research
Medicine
Mesenchymal stem cells
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mesenchyme
Metastasis
Mineralization
Osteoblastogenesis
Osteoblasts
Osteogenesis
Osteogenesis - genetics
Promoter Regions, Genetic - genetics
Rodents
Signal transduction
Signaling
Stem cells
Transcription
Transcription factors
Twist-Related Protein 1 - metabolism
title Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20inhibits%20osteogenesis%20in%20human%20mesenchymal%20stem%20cells%20through%20direct%20regulation%20of%20RUNX2%20by%20TWIST&rft.jtitle=PloS%20one&rft.au=Yang,%20Der-Chih&rft.date=2011-09-09&rft.volume=6&rft.issue=9&rft.spage=e23965&rft.epage=e23965&rft.pages=e23965-e23965&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023965&rft_dat=%3Cgale_plos_%3EA476880586%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308527621&rft_id=info:pmid/21931630&rft_galeid=A476880586&rft_doaj_id=oai_doaj_org_article_f3cfc2a6e2b24a5e9647733d385943b8&rfr_iscdi=true