Feigenbaum graphs: a complex network perspective of chaos

The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-09, Vol.6 (9), p.e22411-e22411
Hauptverfasser: Luque, Bartolo, Lacasa, Lucas, Ballesteros, Fernando J, Robledo, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e22411
container_issue 9
container_start_page e22411
container_title PloS one
container_volume 6
creator Luque, Bartolo
Lacasa, Lucas
Ballesteros, Fernando J
Robledo, Alberto
description The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.
doi_str_mv 10.1371/journal.pone.0022411
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308441470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476880761</galeid><doaj_id>oai_doaj_org_article_da9f50d2850247c7b3750992e23e3b8b</doaj_id><sourcerecordid>A476880761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-4843838ad967690837f11032b5520f43e7d9c9f4ff48354670cfb140dc368b8d3</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEoqXwBggiIYG42MWn-MAFUlVRWKlSJU63luPYiZckDnZSytvj7abVBvUC-cLW-Jt_POM_y55DsIaYwXdbP4VetevB92YNAEIEwgfZMRQYrSgC-OHB-Sh7EuMWgAJzSh9nRwgKWKCCHGfi3Lja9KWaurwOamji-1zl2ndDa67z3oy_ffiZDybEwejRXZnc21w3ysen2SOr2miezftJ9v3847ezz6uLy0-bs9OLlaYCjivCCeaYq0pQRgXgmFkIAUZlUSBgCTasElpYYi3huCCUAW1LSEClMeUlr_BJ9nKvO7Q-yrnrKCEGnBBIGEjEZk9UXm3lEFynwh_plZM3AR9qqcLodGtkpYQtQIV4ARBhmpWYFUAIZBA2uORl0vowV5vKzlTa9GNQ7UJ0edO7Rtb-SmJIU6coCbyZBYL_NZk4ys5FbdpW9cZPUXIBUveUwkS--oe8v7mZqlV6v-utT2X1TlOeEkY5B-xGa30PlVZlOqeTQ6xL8UXC20VCYkZzPdZqilFuvn75f_byx5J9fcA2RrVjE307jc73cQmSPaiDjzEYezdjCOTO4LfTkDuDy9ngKe3F4f_cJd06Gv8FGj3yqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308441470</pqid></control><display><type>article</type><title>Feigenbaum graphs: a complex network perspective of chaos</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Luque, Bartolo ; Lacasa, Lucas ; Ballesteros, Fernando J ; Robledo, Alberto</creator><contributor>Moreno, Yamir</contributor><creatorcontrib>Luque, Bartolo ; Lacasa, Lucas ; Ballesteros, Fernando J ; Robledo, Alberto ; Moreno, Yamir</creatorcontrib><description>The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022411</identifier><identifier>PMID: 21915254</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Attractors (mathematics) ; Cascades ; Chaos theory ; Entropy ; Foreign exchange rates ; Graphs ; Mathematics ; Nonlinear Dynamics ; Nonlinear systems ; Nonlinearity ; Optimization ; Physics ; Splitting ; Time series</subject><ispartof>PloS one, 2011-09, Vol.6 (9), p.e22411-e22411</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Luque et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Luque et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-4843838ad967690837f11032b5520f43e7d9c9f4ff48354670cfb140dc368b8d3</citedby><cites>FETCH-LOGICAL-c691t-4843838ad967690837f11032b5520f43e7d9c9f4ff48354670cfb140dc368b8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168432/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168432/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21915254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moreno, Yamir</contributor><creatorcontrib>Luque, Bartolo</creatorcontrib><creatorcontrib>Lacasa, Lucas</creatorcontrib><creatorcontrib>Ballesteros, Fernando J</creatorcontrib><creatorcontrib>Robledo, Alberto</creatorcontrib><title>Feigenbaum graphs: a complex network perspective of chaos</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.</description><subject>Algorithms</subject><subject>Attractors (mathematics)</subject><subject>Cascades</subject><subject>Chaos theory</subject><subject>Entropy</subject><subject>Foreign exchange rates</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Physics</subject><subject>Splitting</subject><subject>Time series</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttu1DAQhiMEoqXwBggiIYG42MWn-MAFUlVRWKlSJU63luPYiZckDnZSytvj7abVBvUC-cLW-Jt_POM_y55DsIaYwXdbP4VetevB92YNAEIEwgfZMRQYrSgC-OHB-Sh7EuMWgAJzSh9nRwgKWKCCHGfi3Lja9KWaurwOamji-1zl2ndDa67z3oy_ffiZDybEwejRXZnc21w3ysen2SOr2miezftJ9v3847ezz6uLy0-bs9OLlaYCjivCCeaYq0pQRgXgmFkIAUZlUSBgCTasElpYYi3huCCUAW1LSEClMeUlr_BJ9nKvO7Q-yrnrKCEGnBBIGEjEZk9UXm3lEFynwh_plZM3AR9qqcLodGtkpYQtQIV4ARBhmpWYFUAIZBA2uORl0vowV5vKzlTa9GNQ7UJ0edO7Rtb-SmJIU6coCbyZBYL_NZk4ys5FbdpW9cZPUXIBUveUwkS--oe8v7mZqlV6v-utT2X1TlOeEkY5B-xGa30PlVZlOqeTQ6xL8UXC20VCYkZzPdZqilFuvn75f_byx5J9fcA2RrVjE307jc73cQmSPaiDjzEYezdjCOTO4LfTkDuDy9ngKe3F4f_cJd06Gv8FGj3yqg</recordid><startdate>20110907</startdate><enddate>20110907</enddate><creator>Luque, Bartolo</creator><creator>Lacasa, Lucas</creator><creator>Ballesteros, Fernando J</creator><creator>Robledo, Alberto</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110907</creationdate><title>Feigenbaum graphs: a complex network perspective of chaos</title><author>Luque, Bartolo ; Lacasa, Lucas ; Ballesteros, Fernando J ; Robledo, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-4843838ad967690837f11032b5520f43e7d9c9f4ff48354670cfb140dc368b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Attractors (mathematics)</topic><topic>Cascades</topic><topic>Chaos theory</topic><topic>Entropy</topic><topic>Foreign exchange rates</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Physics</topic><topic>Splitting</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luque, Bartolo</creatorcontrib><creatorcontrib>Lacasa, Lucas</creatorcontrib><creatorcontrib>Ballesteros, Fernando J</creatorcontrib><creatorcontrib>Robledo, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luque, Bartolo</au><au>Lacasa, Lucas</au><au>Ballesteros, Fernando J</au><au>Robledo, Alberto</au><au>Moreno, Yamir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feigenbaum graphs: a complex network perspective of chaos</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-09-07</date><risdate>2011</risdate><volume>6</volume><issue>9</issue><spage>e22411</spage><epage>e22411</epage><pages>e22411-e22411</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21915254</pmid><doi>10.1371/journal.pone.0022411</doi><tpages>e22411</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-09, Vol.6 (9), p.e22411-e22411
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1308441470
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Attractors (mathematics)
Cascades
Chaos theory
Entropy
Foreign exchange rates
Graphs
Mathematics
Nonlinear Dynamics
Nonlinear systems
Nonlinearity
Optimization
Physics
Splitting
Time series
title Feigenbaum graphs: a complex network perspective of chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feigenbaum%20graphs:%20a%20complex%20network%20perspective%20of%20chaos&rft.jtitle=PloS%20one&rft.au=Luque,%20Bartolo&rft.date=2011-09-07&rft.volume=6&rft.issue=9&rft.spage=e22411&rft.epage=e22411&rft.pages=e22411-e22411&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022411&rft_dat=%3Cgale_plos_%3EA476880761%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308441470&rft_id=info:pmid/21915254&rft_galeid=A476880761&rft_doaj_id=oai_doaj_org_article_da9f50d2850247c7b3750992e23e3b8b&rfr_iscdi=true