Protein diffusion in mammalian cell cytoplasm

We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e22962-e22962
Hauptverfasser: Kühn, Thomas, Ihalainen, Teemu O, Hyväluoma, Jari, Dross, Nicolas, Willman, Sami F, Langowski, Jörg, Vihinen-Ranta, Maija, Timonen, Jussi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e22962
container_issue 8
container_start_page e22962
container_title PloS one
container_volume 6
creator Kühn, Thomas
Ihalainen, Teemu O
Hyväluoma, Jari
Dross, Nicolas
Willman, Sami F
Langowski, Jörg
Vihinen-Ranta, Maija
Timonen, Jussi
description We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.
doi_str_mv 10.1371/journal.pone.0022962
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308408507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476881937</galeid><doaj_id>oai_doaj_org_article_45966f16aa314dd2919ac0b530383fa0</doaj_id><sourcerecordid>A476881937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK1-A9EFQfFh1twn8yKU4mWhUPH2Gs7mspslM9lOZsR-ezPutOxIHyQPuf3O_-Sc_IviOUZLTCv8bheHroWw3MfWLhEipBbkQXGKa0pKQRB9eLQ-KZ6ktEOIUynE4-KEYClFVeHTovzSxd76dmG8c0PysV3kTQNNA8FDu9A2hIW-6eM-QGqeFo8chGSfTfNZ8ePjh-8Xn8vLq0-ri_PLUosa9yUFghzmTDgirGVSVpZIzCVUleXYCG4YtUQbqDTOoCRraYRgzDDnNF4Tela8POjuQ0xqqjQpTJFkSHJUZWJ1IEyEndp3voHuRkXw6u9B7DYKut7rYBXjtRAOCwCKmTGkxjVotOYUUUkdoKz1fso2rBtrtG37DsJMdH7T-q3axF-K5poqVmeBN5NAF68Hm3rV-DR2Dlobh6RyAzgiNaeZfPUPeX9xE7WB_H7fupjT6lFTnbNKSJk_dqSW91B5GNt4nV3hfD6fBbydBWSmt7_7DQwpqdW3r__PXv2cs6-P2K2F0G9TDEOf3ZTmIDuAuospddbd9RgjNZr6thtqNLWaTJ3DXhz_z13QrYvpH8DB75Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308408507</pqid></control><display><type>article</type><title>Protein diffusion in mammalian cell cytoplasm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Kühn, Thomas ; Ihalainen, Teemu O ; Hyväluoma, Jari ; Dross, Nicolas ; Willman, Sami F ; Langowski, Jörg ; Vihinen-Ranta, Maija ; Timonen, Jussi</creator><creatorcontrib>Kühn, Thomas ; Ihalainen, Teemu O ; Hyväluoma, Jari ; Dross, Nicolas ; Willman, Sami F ; Langowski, Jörg ; Vihinen-Ranta, Maija ; Timonen, Jussi</creatorcontrib><description>We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022962</identifier><identifier>PMID: 21886771</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bacterial Proteins - metabolism ; Binding sites ; Biology ; Biophysics ; Cats ; Cell lines ; Cells (Biology) ; Cells - metabolism ; Cellular structure ; Computer Simulation ; Confocal microscopy ; Cytoplasm ; Cytoplasm - metabolism ; Cytosol ; Diffusion ; Diffusion coefficient ; Fluid dynamics ; Fluorescence ; Fluorescence Recovery After Photobleaching ; Fluorescence spectroscopy ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Laboratories ; Luminescent Proteins - metabolism ; Mammals - metabolism ; Mathematical models ; Medical research ; Microscopy ; Microscopy, Confocal ; Microscopy, Fluorescence ; Models, Biological ; Nuclei ; Nuclei (cytology) ; Numerical methods ; Physics ; Porosity ; Protein binding ; Proteins ; Proteins - metabolism ; Reproducibility of Results ; Spectroscopy ; Spectrum analysis ; Three dimensional models ; Viscoelasticity</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e22962-e22962</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kühn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kühn et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</citedby><cites>FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158749/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158749/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21886771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kühn, Thomas</creatorcontrib><creatorcontrib>Ihalainen, Teemu O</creatorcontrib><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Dross, Nicolas</creatorcontrib><creatorcontrib>Willman, Sami F</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><creatorcontrib>Vihinen-Ranta, Maija</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><title>Protein diffusion in mammalian cell cytoplasm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.</description><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Cats</subject><subject>Cell lines</subject><subject>Cells (Biology)</subject><subject>Cells - metabolism</subject><subject>Cellular structure</subject><subject>Computer Simulation</subject><subject>Confocal microscopy</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Cytosol</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fluid dynamics</subject><subject>Fluorescence</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Fluorescence spectroscopy</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Laboratories</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mammals - metabolism</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Porosity</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEUxwdRbK1-A9EFQfFh1twn8yKU4mWhUPH2Gs7mspslM9lOZsR-ezPutOxIHyQPuf3O_-Sc_IviOUZLTCv8bheHroWw3MfWLhEipBbkQXGKa0pKQRB9eLQ-KZ6ktEOIUynE4-KEYClFVeHTovzSxd76dmG8c0PysV3kTQNNA8FDu9A2hIW-6eM-QGqeFo8chGSfTfNZ8ePjh-8Xn8vLq0-ri_PLUosa9yUFghzmTDgirGVSVpZIzCVUleXYCG4YtUQbqDTOoCRraYRgzDDnNF4Tela8POjuQ0xqqjQpTJFkSHJUZWJ1IEyEndp3voHuRkXw6u9B7DYKut7rYBXjtRAOCwCKmTGkxjVotOYUUUkdoKz1fso2rBtrtG37DsJMdH7T-q3axF-K5poqVmeBN5NAF68Hm3rV-DR2Dlobh6RyAzgiNaeZfPUPeX9xE7WB_H7fupjT6lFTnbNKSJk_dqSW91B5GNt4nV3hfD6fBbydBWSmt7_7DQwpqdW3r__PXv2cs6-P2K2F0G9TDEOf3ZTmIDuAuospddbd9RgjNZr6thtqNLWaTJ3DXhz_z13QrYvpH8DB75Q</recordid><startdate>20110819</startdate><enddate>20110819</enddate><creator>Kühn, Thomas</creator><creator>Ihalainen, Teemu O</creator><creator>Hyväluoma, Jari</creator><creator>Dross, Nicolas</creator><creator>Willman, Sami F</creator><creator>Langowski, Jörg</creator><creator>Vihinen-Ranta, Maija</creator><creator>Timonen, Jussi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110819</creationdate><title>Protein diffusion in mammalian cell cytoplasm</title><author>Kühn, Thomas ; Ihalainen, Teemu O ; Hyväluoma, Jari ; Dross, Nicolas ; Willman, Sami F ; Langowski, Jörg ; Vihinen-Ranta, Maija ; Timonen, Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Cats</topic><topic>Cell lines</topic><topic>Cells (Biology)</topic><topic>Cells - metabolism</topic><topic>Cellular structure</topic><topic>Computer Simulation</topic><topic>Confocal microscopy</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Cytosol</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fluid dynamics</topic><topic>Fluorescence</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Fluorescence spectroscopy</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Laboratories</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mammals - metabolism</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Porosity</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kühn, Thomas</creatorcontrib><creatorcontrib>Ihalainen, Teemu O</creatorcontrib><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Dross, Nicolas</creatorcontrib><creatorcontrib>Willman, Sami F</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><creatorcontrib>Vihinen-Ranta, Maija</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühn, Thomas</au><au>Ihalainen, Teemu O</au><au>Hyväluoma, Jari</au><au>Dross, Nicolas</au><au>Willman, Sami F</au><au>Langowski, Jörg</au><au>Vihinen-Ranta, Maija</au><au>Timonen, Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein diffusion in mammalian cell cytoplasm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-19</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e22962</spage><epage>e22962</epage><pages>e22962-e22962</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21886771</pmid><doi>10.1371/journal.pone.0022962</doi><tpages>e22962</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e22962-e22962
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1308408507
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Animals
Bacterial Proteins - metabolism
Binding sites
Biology
Biophysics
Cats
Cell lines
Cells (Biology)
Cells - metabolism
Cellular structure
Computer Simulation
Confocal microscopy
Cytoplasm
Cytoplasm - metabolism
Cytosol
Diffusion
Diffusion coefficient
Fluid dynamics
Fluorescence
Fluorescence Recovery After Photobleaching
Fluorescence spectroscopy
HeLa Cells
Humans
Image Processing, Computer-Assisted
Laboratories
Luminescent Proteins - metabolism
Mammals - metabolism
Mathematical models
Medical research
Microscopy
Microscopy, Confocal
Microscopy, Fluorescence
Models, Biological
Nuclei
Nuclei (cytology)
Numerical methods
Physics
Porosity
Protein binding
Proteins
Proteins - metabolism
Reproducibility of Results
Spectroscopy
Spectrum analysis
Three dimensional models
Viscoelasticity
title Protein diffusion in mammalian cell cytoplasm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20diffusion%20in%20mammalian%20cell%20cytoplasm&rft.jtitle=PloS%20one&rft.au=K%C3%BChn,%20Thomas&rft.date=2011-08-19&rft.volume=6&rft.issue=8&rft.spage=e22962&rft.epage=e22962&rft.pages=e22962-e22962&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022962&rft_dat=%3Cgale_plos_%3EA476881937%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308408507&rft_id=info:pmid/21886771&rft_galeid=A476881937&rft_doaj_id=oai_doaj_org_article_45966f16aa314dd2919ac0b530383fa0&rfr_iscdi=true