Protein diffusion in mammalian cell cytoplasm
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope,...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-08, Vol.6 (8), p.e22962-e22962 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e22962 |
---|---|
container_issue | 8 |
container_start_page | e22962 |
container_title | PloS one |
container_volume | 6 |
creator | Kühn, Thomas Ihalainen, Teemu O Hyväluoma, Jari Dross, Nicolas Willman, Sami F Langowski, Jörg Vihinen-Ranta, Maija Timonen, Jussi |
description | We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS. |
doi_str_mv | 10.1371/journal.pone.0022962 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308408507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476881937</galeid><doaj_id>oai_doaj_org_article_45966f16aa314dd2919ac0b530383fa0</doaj_id><sourcerecordid>A476881937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbK1-A9EFQfFh1twn8yKU4mWhUPH2Gs7mspslM9lOZsR-ezPutOxIHyQPuf3O_-Sc_IviOUZLTCv8bheHroWw3MfWLhEipBbkQXGKa0pKQRB9eLQ-KZ6ktEOIUynE4-KEYClFVeHTovzSxd76dmG8c0PysV3kTQNNA8FDu9A2hIW-6eM-QGqeFo8chGSfTfNZ8ePjh-8Xn8vLq0-ri_PLUosa9yUFghzmTDgirGVSVpZIzCVUleXYCG4YtUQbqDTOoCRraYRgzDDnNF4Tela8POjuQ0xqqjQpTJFkSHJUZWJ1IEyEndp3voHuRkXw6u9B7DYKut7rYBXjtRAOCwCKmTGkxjVotOYUUUkdoKz1fso2rBtrtG37DsJMdH7T-q3axF-K5poqVmeBN5NAF68Hm3rV-DR2Dlobh6RyAzgiNaeZfPUPeX9xE7WB_H7fupjT6lFTnbNKSJk_dqSW91B5GNt4nV3hfD6fBbydBWSmt7_7DQwpqdW3r__PXv2cs6-P2K2F0G9TDEOf3ZTmIDuAuospddbd9RgjNZr6thtqNLWaTJ3DXhz_z13QrYvpH8DB75Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308408507</pqid></control><display><type>article</type><title>Protein diffusion in mammalian cell cytoplasm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Kühn, Thomas ; Ihalainen, Teemu O ; Hyväluoma, Jari ; Dross, Nicolas ; Willman, Sami F ; Langowski, Jörg ; Vihinen-Ranta, Maija ; Timonen, Jussi</creator><creatorcontrib>Kühn, Thomas ; Ihalainen, Teemu O ; Hyväluoma, Jari ; Dross, Nicolas ; Willman, Sami F ; Langowski, Jörg ; Vihinen-Ranta, Maija ; Timonen, Jussi</creatorcontrib><description>We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022962</identifier><identifier>PMID: 21886771</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bacterial Proteins - metabolism ; Binding sites ; Biology ; Biophysics ; Cats ; Cell lines ; Cells (Biology) ; Cells - metabolism ; Cellular structure ; Computer Simulation ; Confocal microscopy ; Cytoplasm ; Cytoplasm - metabolism ; Cytosol ; Diffusion ; Diffusion coefficient ; Fluid dynamics ; Fluorescence ; Fluorescence Recovery After Photobleaching ; Fluorescence spectroscopy ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Laboratories ; Luminescent Proteins - metabolism ; Mammals - metabolism ; Mathematical models ; Medical research ; Microscopy ; Microscopy, Confocal ; Microscopy, Fluorescence ; Models, Biological ; Nuclei ; Nuclei (cytology) ; Numerical methods ; Physics ; Porosity ; Protein binding ; Proteins ; Proteins - metabolism ; Reproducibility of Results ; Spectroscopy ; Spectrum analysis ; Three dimensional models ; Viscoelasticity</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e22962-e22962</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kühn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kühn et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</citedby><cites>FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158749/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158749/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21886771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kühn, Thomas</creatorcontrib><creatorcontrib>Ihalainen, Teemu O</creatorcontrib><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Dross, Nicolas</creatorcontrib><creatorcontrib>Willman, Sami F</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><creatorcontrib>Vihinen-Ranta, Maija</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><title>Protein diffusion in mammalian cell cytoplasm</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.</description><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Cats</subject><subject>Cell lines</subject><subject>Cells (Biology)</subject><subject>Cells - metabolism</subject><subject>Cellular structure</subject><subject>Computer Simulation</subject><subject>Confocal microscopy</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Cytosol</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Fluid dynamics</subject><subject>Fluorescence</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Fluorescence spectroscopy</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Laboratories</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mammals - metabolism</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Porosity</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEUxwdRbK1-A9EFQfFh1twn8yKU4mWhUPH2Gs7mspslM9lOZsR-ezPutOxIHyQPuf3O_-Sc_IviOUZLTCv8bheHroWw3MfWLhEipBbkQXGKa0pKQRB9eLQ-KZ6ktEOIUynE4-KEYClFVeHTovzSxd76dmG8c0PysV3kTQNNA8FDu9A2hIW-6eM-QGqeFo8chGSfTfNZ8ePjh-8Xn8vLq0-ri_PLUosa9yUFghzmTDgirGVSVpZIzCVUleXYCG4YtUQbqDTOoCRraYRgzDDnNF4Tela8POjuQ0xqqjQpTJFkSHJUZWJ1IEyEndp3voHuRkXw6u9B7DYKut7rYBXjtRAOCwCKmTGkxjVotOYUUUkdoKz1fso2rBtrtG37DsJMdH7T-q3axF-K5poqVmeBN5NAF68Hm3rV-DR2Dlobh6RyAzgiNaeZfPUPeX9xE7WB_H7fupjT6lFTnbNKSJk_dqSW91B5GNt4nV3hfD6fBbydBWSmt7_7DQwpqdW3r__PXv2cs6-P2K2F0G9TDEOf3ZTmIDuAuospddbd9RgjNZr6thtqNLWaTJ3DXhz_z13QrYvpH8DB75Q</recordid><startdate>20110819</startdate><enddate>20110819</enddate><creator>Kühn, Thomas</creator><creator>Ihalainen, Teemu O</creator><creator>Hyväluoma, Jari</creator><creator>Dross, Nicolas</creator><creator>Willman, Sami F</creator><creator>Langowski, Jörg</creator><creator>Vihinen-Ranta, Maija</creator><creator>Timonen, Jussi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110819</creationdate><title>Protein diffusion in mammalian cell cytoplasm</title><author>Kühn, Thomas ; Ihalainen, Teemu O ; Hyväluoma, Jari ; Dross, Nicolas ; Willman, Sami F ; Langowski, Jörg ; Vihinen-Ranta, Maija ; Timonen, Jussi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-3a20f1546f26ee4887e28158a77e51d65d43e2cda7c10f182b8d6644d4ffc1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Cats</topic><topic>Cell lines</topic><topic>Cells (Biology)</topic><topic>Cells - metabolism</topic><topic>Cellular structure</topic><topic>Computer Simulation</topic><topic>Confocal microscopy</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Cytosol</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Fluid dynamics</topic><topic>Fluorescence</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Fluorescence spectroscopy</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Laboratories</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mammals - metabolism</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Porosity</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kühn, Thomas</creatorcontrib><creatorcontrib>Ihalainen, Teemu O</creatorcontrib><creatorcontrib>Hyväluoma, Jari</creatorcontrib><creatorcontrib>Dross, Nicolas</creatorcontrib><creatorcontrib>Willman, Sami F</creatorcontrib><creatorcontrib>Langowski, Jörg</creatorcontrib><creatorcontrib>Vihinen-Ranta, Maija</creatorcontrib><creatorcontrib>Timonen, Jussi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kühn, Thomas</au><au>Ihalainen, Teemu O</au><au>Hyväluoma, Jari</au><au>Dross, Nicolas</au><au>Willman, Sami F</au><au>Langowski, Jörg</au><au>Vihinen-Ranta, Maija</au><au>Timonen, Jussi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein diffusion in mammalian cell cytoplasm</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-19</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e22962</spage><epage>e22962</epage><pages>e22962-e22962</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21886771</pmid><doi>10.1371/journal.pone.0022962</doi><tpages>e22962</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-08, Vol.6 (8), p.e22962-e22962 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1308408507 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Bacterial Proteins - metabolism Binding sites Biology Biophysics Cats Cell lines Cells (Biology) Cells - metabolism Cellular structure Computer Simulation Confocal microscopy Cytoplasm Cytoplasm - metabolism Cytosol Diffusion Diffusion coefficient Fluid dynamics Fluorescence Fluorescence Recovery After Photobleaching Fluorescence spectroscopy HeLa Cells Humans Image Processing, Computer-Assisted Laboratories Luminescent Proteins - metabolism Mammals - metabolism Mathematical models Medical research Microscopy Microscopy, Confocal Microscopy, Fluorescence Models, Biological Nuclei Nuclei (cytology) Numerical methods Physics Porosity Protein binding Proteins Proteins - metabolism Reproducibility of Results Spectroscopy Spectrum analysis Three dimensional models Viscoelasticity |
title | Protein diffusion in mammalian cell cytoplasm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20diffusion%20in%20mammalian%20cell%20cytoplasm&rft.jtitle=PloS%20one&rft.au=K%C3%BChn,%20Thomas&rft.date=2011-08-19&rft.volume=6&rft.issue=8&rft.spage=e22962&rft.epage=e22962&rft.pages=e22962-e22962&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022962&rft_dat=%3Cgale_plos_%3EA476881937%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308408507&rft_id=info:pmid/21886771&rft_galeid=A476881937&rft_doaj_id=oai_doaj_org_article_45966f16aa314dd2919ac0b530383fa0&rfr_iscdi=true |