Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive

Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e23508-e23508
Hauptverfasser: Friberg, Urban, Stewart, Andrew D, Rice, William R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e23508
container_issue 8
container_start_page e23508
container_title PloS one
container_volume 6
creator Friberg, Urban
Stewart, Andrew D
Rice, William R
description Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them. Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons. Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.
doi_str_mv 10.1371/journal.pone.0023508
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1308407824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476882256</galeid><doaj_id>oai_doaj_org_article_4ebb0810168a4fb9a0e2dd052fbcd701</doaj_id><sourcerecordid>A476882256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c766t-957a5c9f3fa2cba5cbc33eebe95054f2de980b5769bd6f1b8f6f2994c72b781c3</originalsourceid><addsrcrecordid>eNqNk-9r1DAYx4sobk7_A9GCoAj2zI-mTd8Ix5w6GAycDt-FJH1yl5k2Z9Kezr_e3O42VhkofdGQfr7fJ_0-ebLsKUYzTGv89sKPoZdutvI9zBAilCF-L9vHDSVFRRC9f2u9lz2K8QIhRnlVPcz2COaM47LZz86PupUNVkuXw9q20GvIjQ959H3x3Tpn-0X-LdfL4DsffQcxl32bD0vI_QqCHKzvc2_ys3nx-3LhB6vzNtg1PM4eGOkiPNm9D7KvH46-HH4qTk4_Hh_OTwpdV9VQNKyWTDeGGkm0SkulKQVQ0DDESkNaaDhSrK4a1VYGK24qQ5qm1DVRNceaHmTPt74r56PYRRIFpoiXqOakTMTxlmi9vBCrYDsZLoWXVlxt-LAQMqRzOxAlKIU4RrjisjSqkQhI2yJGjNJtjXDyerP1ij9hNaqJ23t7Pr9yG0eBGWfNpnTxb9zZxNM6dSTx73Y_M6oOWg39EKSbyKZfersUC78WFLOaXhV8tTMI_scIcRCdjRqckz34MQrOS17WVbkhX_xF3p3djlrIFI_tjU9l9cZTzJMP54SwKlGzO6j0tNBZnW6nsWl_Ing9ESRmgF_DQo4xiuOzz__Pnp5P2Ze32CVINyyjd-PmksYpWG5BHXyMAcxNxhhtmoGv0xCb4RK74UqyZ7f7cyO6nib6B87DH-4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308407824</pqid></control><display><type>article</type><title>Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Friberg, Urban ; Stewart, Andrew D ; Rice, William R</creator><contributor>Imhof, Axel</contributor><creatorcontrib>Friberg, Urban ; Stewart, Andrew D ; Rice, William R ; Imhof, Axel</creatorcontrib><description>Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them. Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons. Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023508</identifier><identifier>PMID: 21858149</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Biological evolution ; Biology ; Chromosomes ; Competition ; Diploidy ; Disease transmission ; Drosophila ; Drosophila melanogaster ; Drosophila simulans ; Ecology ; Empirical analysis ; Endosymbionts ; Evolution ; Female ; Gametogenesis ; Gametogenesis - genetics ; Gene clusters ; Gene expression ; Genes ; Genes, Insect - genetics ; Genetic aspects ; Haploidy ; Inheritance Patterns ; Insects ; Life cycle analysis ; Male ; Males ; Marine biology ; Microorganisms ; Models, Genetic ; Mutation ; Offspring ; Phenotypes ; Selection, Genetic ; Sex ; Sex chromosomes ; Sex Factors ; Sex linkage ; Sex Ratio ; Sperm ; Spiroplasma ; Wolbachia ; X Chromosome - genetics ; X chromosomes ; Y Chromosome - genetics ; Y chromosomes ; Zygote - metabolism</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e23508-e23508</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Friberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Friberg et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c766t-957a5c9f3fa2cba5cbc33eebe95054f2de980b5769bd6f1b8f6f2994c72b781c3</citedby><cites>FETCH-LOGICAL-c766t-957a5c9f3fa2cba5cbc33eebe95054f2de980b5769bd6f1b8f6f2994c72b781c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21858149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137218$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158594$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Imhof, Axel</contributor><creatorcontrib>Friberg, Urban</creatorcontrib><creatorcontrib>Stewart, Andrew D</creatorcontrib><creatorcontrib>Rice, William R</creatorcontrib><title>Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them. Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons. Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Chromosomes</subject><subject>Competition</subject><subject>Diploidy</subject><subject>Disease transmission</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila simulans</subject><subject>Ecology</subject><subject>Empirical analysis</subject><subject>Endosymbionts</subject><subject>Evolution</subject><subject>Female</subject><subject>Gametogenesis</subject><subject>Gametogenesis - genetics</subject><subject>Gene clusters</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genes, Insect - genetics</subject><subject>Genetic aspects</subject><subject>Haploidy</subject><subject>Inheritance Patterns</subject><subject>Insects</subject><subject>Life cycle analysis</subject><subject>Male</subject><subject>Males</subject><subject>Marine biology</subject><subject>Microorganisms</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Offspring</subject><subject>Phenotypes</subject><subject>Selection, Genetic</subject><subject>Sex</subject><subject>Sex chromosomes</subject><subject>Sex Factors</subject><subject>Sex linkage</subject><subject>Sex Ratio</subject><subject>Sperm</subject><subject>Spiroplasma</subject><subject>Wolbachia</subject><subject>X Chromosome - genetics</subject><subject>X chromosomes</subject><subject>Y Chromosome - genetics</subject><subject>Y chromosomes</subject><subject>Zygote - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk-9r1DAYx4sobk7_A9GCoAj2zI-mTd8Ix5w6GAycDt-FJH1yl5k2Z9Kezr_e3O42VhkofdGQfr7fJ_0-ebLsKUYzTGv89sKPoZdutvI9zBAilCF-L9vHDSVFRRC9f2u9lz2K8QIhRnlVPcz2COaM47LZz86PupUNVkuXw9q20GvIjQ959H3x3Tpn-0X-LdfL4DsffQcxl32bD0vI_QqCHKzvc2_ys3nx-3LhB6vzNtg1PM4eGOkiPNm9D7KvH46-HH4qTk4_Hh_OTwpdV9VQNKyWTDeGGkm0SkulKQVQ0DDESkNaaDhSrK4a1VYGK24qQ5qm1DVRNceaHmTPt74r56PYRRIFpoiXqOakTMTxlmi9vBCrYDsZLoWXVlxt-LAQMqRzOxAlKIU4RrjisjSqkQhI2yJGjNJtjXDyerP1ij9hNaqJ23t7Pr9yG0eBGWfNpnTxb9zZxNM6dSTx73Y_M6oOWg39EKSbyKZfersUC78WFLOaXhV8tTMI_scIcRCdjRqckz34MQrOS17WVbkhX_xF3p3djlrIFI_tjU9l9cZTzJMP54SwKlGzO6j0tNBZnW6nsWl_Ing9ESRmgF_DQo4xiuOzz__Pnp5P2Ze32CVINyyjd-PmksYpWG5BHXyMAcxNxhhtmoGv0xCb4RK74UqyZ7f7cyO6nib6B87DH-4</recordid><startdate>20110817</startdate><enddate>20110817</enddate><creator>Friberg, Urban</creator><creator>Stewart, Andrew D</creator><creator>Rice, William R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DF2</scope><scope>DOA</scope></search><sort><creationdate>20110817</creationdate><title>Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive</title><author>Friberg, Urban ; Stewart, Andrew D ; Rice, William R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c766t-957a5c9f3fa2cba5cbc33eebe95054f2de980b5769bd6f1b8f6f2994c72b781c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Chromosomes</topic><topic>Competition</topic><topic>Diploidy</topic><topic>Disease transmission</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila simulans</topic><topic>Ecology</topic><topic>Empirical analysis</topic><topic>Endosymbionts</topic><topic>Evolution</topic><topic>Female</topic><topic>Gametogenesis</topic><topic>Gametogenesis - genetics</topic><topic>Gene clusters</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genes, Insect - genetics</topic><topic>Genetic aspects</topic><topic>Haploidy</topic><topic>Inheritance Patterns</topic><topic>Insects</topic><topic>Life cycle analysis</topic><topic>Male</topic><topic>Males</topic><topic>Marine biology</topic><topic>Microorganisms</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Offspring</topic><topic>Phenotypes</topic><topic>Selection, Genetic</topic><topic>Sex</topic><topic>Sex chromosomes</topic><topic>Sex Factors</topic><topic>Sex linkage</topic><topic>Sex Ratio</topic><topic>Sperm</topic><topic>Spiroplasma</topic><topic>Wolbachia</topic><topic>X Chromosome - genetics</topic><topic>X chromosomes</topic><topic>Y Chromosome - genetics</topic><topic>Y chromosomes</topic><topic>Zygote - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friberg, Urban</creatorcontrib><creatorcontrib>Stewart, Andrew D</creatorcontrib><creatorcontrib>Rice, William R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Uppsala universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friberg, Urban</au><au>Stewart, Andrew D</au><au>Rice, William R</au><au>Imhof, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-17</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e23508</spage><epage>e23508</epage><pages>e23508-e23508</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them. Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons. Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21858149</pmid><doi>10.1371/journal.pone.0023508</doi><tpages>e23508</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e23508-e23508
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1308407824
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Animals
Biological evolution
Biology
Chromosomes
Competition
Diploidy
Disease transmission
Drosophila
Drosophila melanogaster
Drosophila simulans
Ecology
Empirical analysis
Endosymbionts
Evolution
Female
Gametogenesis
Gametogenesis - genetics
Gene clusters
Gene expression
Genes
Genes, Insect - genetics
Genetic aspects
Haploidy
Inheritance Patterns
Insects
Life cycle analysis
Male
Males
Marine biology
Microorganisms
Models, Genetic
Mutation
Offspring
Phenotypes
Selection, Genetic
Sex
Sex chromosomes
Sex Factors
Sex linkage
Sex Ratio
Sperm
Spiroplasma
Wolbachia
X Chromosome - genetics
X chromosomes
Y Chromosome - genetics
Y chromosomes
Zygote - metabolism
title Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20evidence%20for%20son-killing%20X%20chromosomes%20and%20the%20operation%20of%20SA-zygotic%20drive&rft.jtitle=PloS%20one&rft.au=Friberg,%20Urban&rft.date=2011-08-17&rft.volume=6&rft.issue=8&rft.spage=e23508&rft.epage=e23508&rft.pages=e23508-e23508&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023508&rft_dat=%3Cgale_plos_%3EA476882256%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308407824&rft_id=info:pmid/21858149&rft_galeid=A476882256&rft_doaj_id=oai_doaj_org_article_4ebb0810168a4fb9a0e2dd052fbcd701&rfr_iscdi=true