The phylogenetic diversity of metagenomes

Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e23214-e23214
Hauptverfasser: Kembel, Steven W, Eisen, Jonathan A, Pollard, Katherine S, Green, Jessica L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e23214
container_issue 8
container_start_page e23214
container_title PloS one
container_volume 6
creator Kembel, Steven W
Eisen, Jonathan A
Pollard, Katherine S
Green, Jessica L
description Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.
doi_str_mv 10.1371/journal.pone.0023214
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1307901553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476881222</galeid><doaj_id>oai_doaj_org_article_c502e1b142924485838979b8b228acdf</doaj_id><sourcerecordid>A476881222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-ae5224e7f24dde4e7746691cd2a1d0877d6044cdf693f8535cfde4a6294a6a1f3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EFQenFrvme5EYoxY-FQkGrtyGbnJnNMjPZTjLF_fdm3WnZkV5IIAk5z3lPTvIWxWuMFpiW-OMmDH1nmsU2dLBAiFCC2ZPiFCtK5oIg-vRof1K8iHGDEKdSiOfFCcEKEy7VaXF-s4bZdr1rQg0dJG9nzt9BH33azUI1ayGZHAgtxJfFs8o0EV6N61nx88vnm8tv86vrr8vLi6u5FQqnuQFOCIOyIsw5yJuSiRywjhjskCxLJxBj1lVC0Upyym2VMSOIypPBFT0r3h50t02IeuwyakxRqRDmnGZieSBcMBu97X1r-p0Oxuu_B6GvtelzKw1oyxEBvMKMKMKY5JJKVaqVXBEiTb5E1vo0VhtWLTgLXepNMxGdRjq_1nW40xQLgRnPAh9GgT7cDhCTbn200DSmgzBELaXaFy5VJt_9Qz7e3EjVJt_fd1XIZe1eU1-wUkiJCSGZWjxC5eGg9TY7ovL5fJJwPknITILfqTZDjHr54_v_s9e_puz7I3YNpknrGJoh-dDFKcgOoO1DjD1UD2-Mkd4b-v419N7QejR0Tntz_D8PSfcOpn8ATZHuOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1307901553</pqid></control><display><type>article</type><title>The phylogenetic diversity of metagenomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kembel, Steven W ; Eisen, Jonathan A ; Pollard, Katherine S ; Green, Jessica L</creator><contributor>Liberles, David</contributor><creatorcontrib>Kembel, Steven W ; Eisen, Jonathan A ; Pollard, Katherine S ; Green, Jessica L ; Liberles, David</creatorcontrib><description>Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023214</identifier><identifier>PMID: 21912589</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Aquatic Organisms - classification ; Aquatic Organisms - genetics ; Aquatic Organisms - microbiology ; Assembly ; Automation ; Biodiversity ; Bioinformatics ; Biology ; Communities ; Community ecology ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Evolution ; Gene families ; Gene sequencing ; Genes ; Genetic Markers - genetics ; Genomes ; Genomics ; Limnology ; Metagenome - genetics ; Metagenomics ; Microbial activity ; Microbiology ; Microorganisms ; Ocean surface ; Phylogenetics ; Phylogeny ; Ribosome Subunits, Small - genetics ; RNA ; RNA, Ribosomal - genetics ; rRNA ; Studies ; Taxa ; Taxonomy ; Trends</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e23214-e23214</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kembel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kembel et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-ae5224e7f24dde4e7746691cd2a1d0877d6044cdf693f8535cfde4a6294a6a1f3</citedby><cites>FETCH-LOGICAL-c691t-ae5224e7f24dde4e7746691cd2a1d0877d6044cdf693f8535cfde4a6294a6a1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21912589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Liberles, David</contributor><creatorcontrib>Kembel, Steven W</creatorcontrib><creatorcontrib>Eisen, Jonathan A</creatorcontrib><creatorcontrib>Pollard, Katherine S</creatorcontrib><creatorcontrib>Green, Jessica L</creatorcontrib><title>The phylogenetic diversity of metagenomes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.</description><subject>Analysis</subject><subject>Aquatic Organisms - classification</subject><subject>Aquatic Organisms - genetics</subject><subject>Aquatic Organisms - microbiology</subject><subject>Assembly</subject><subject>Automation</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Communities</subject><subject>Community ecology</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Evolution</subject><subject>Gene families</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic Markers - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Limnology</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Microbial activity</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Ocean surface</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Ribosome Subunits, Small - genetics</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>rRNA</subject><subject>Studies</subject><subject>Taxa</subject><subject>Taxonomy</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EFQenFrvme5EYoxY-FQkGrtyGbnJnNMjPZTjLF_fdm3WnZkV5IIAk5z3lPTvIWxWuMFpiW-OMmDH1nmsU2dLBAiFCC2ZPiFCtK5oIg-vRof1K8iHGDEKdSiOfFCcEKEy7VaXF-s4bZdr1rQg0dJG9nzt9BH33azUI1ayGZHAgtxJfFs8o0EV6N61nx88vnm8tv86vrr8vLi6u5FQqnuQFOCIOyIsw5yJuSiRywjhjskCxLJxBj1lVC0Upyym2VMSOIypPBFT0r3h50t02IeuwyakxRqRDmnGZieSBcMBu97X1r-p0Oxuu_B6GvtelzKw1oyxEBvMKMKMKY5JJKVaqVXBEiTb5E1vo0VhtWLTgLXepNMxGdRjq_1nW40xQLgRnPAh9GgT7cDhCTbn200DSmgzBELaXaFy5VJt_9Qz7e3EjVJt_fd1XIZe1eU1-wUkiJCSGZWjxC5eGg9TY7ovL5fJJwPknITILfqTZDjHr54_v_s9e_puz7I3YNpknrGJoh-dDFKcgOoO1DjD1UD2-Mkd4b-v419N7QejR0Tntz_D8PSfcOpn8ATZHuOg</recordid><startdate>20110831</startdate><enddate>20110831</enddate><creator>Kembel, Steven W</creator><creator>Eisen, Jonathan A</creator><creator>Pollard, Katherine S</creator><creator>Green, Jessica L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110831</creationdate><title>The phylogenetic diversity of metagenomes</title><author>Kembel, Steven W ; Eisen, Jonathan A ; Pollard, Katherine S ; Green, Jessica L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-ae5224e7f24dde4e7746691cd2a1d0877d6044cdf693f8535cfde4a6294a6a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Aquatic Organisms - classification</topic><topic>Aquatic Organisms - genetics</topic><topic>Aquatic Organisms - microbiology</topic><topic>Assembly</topic><topic>Automation</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Communities</topic><topic>Community ecology</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Evolution</topic><topic>Gene families</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic Markers - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Limnology</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Microbial activity</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Ocean surface</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Ribosome Subunits, Small - genetics</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>rRNA</topic><topic>Studies</topic><topic>Taxa</topic><topic>Taxonomy</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kembel, Steven W</creatorcontrib><creatorcontrib>Eisen, Jonathan A</creatorcontrib><creatorcontrib>Pollard, Katherine S</creatorcontrib><creatorcontrib>Green, Jessica L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kembel, Steven W</au><au>Eisen, Jonathan A</au><au>Pollard, Katherine S</au><au>Green, Jessica L</au><au>Liberles, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The phylogenetic diversity of metagenomes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-31</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e23214</spage><epage>e23214</epage><pages>e23214-e23214</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21912589</pmid><doi>10.1371/journal.pone.0023214</doi><tpages>e23214</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e23214-e23214
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1307901553
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Aquatic Organisms - classification
Aquatic Organisms - genetics
Aquatic Organisms - microbiology
Assembly
Automation
Biodiversity
Bioinformatics
Biology
Communities
Community ecology
Datasets
Deoxyribonucleic acid
DNA
DNA sequencing
Evolution
Gene families
Gene sequencing
Genes
Genetic Markers - genetics
Genomes
Genomics
Limnology
Metagenome - genetics
Metagenomics
Microbial activity
Microbiology
Microorganisms
Ocean surface
Phylogenetics
Phylogeny
Ribosome Subunits, Small - genetics
RNA
RNA, Ribosomal - genetics
rRNA
Studies
Taxa
Taxonomy
Trends
title The phylogenetic diversity of metagenomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20phylogenetic%20diversity%20of%20metagenomes&rft.jtitle=PloS%20one&rft.au=Kembel,%20Steven%20W&rft.date=2011-08-31&rft.volume=6&rft.issue=8&rft.spage=e23214&rft.epage=e23214&rft.pages=e23214-e23214&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023214&rft_dat=%3Cgale_plos_%3EA476881222%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1307901553&rft_id=info:pmid/21912589&rft_galeid=A476881222&rft_doaj_id=oai_doaj_org_article_c502e1b142924485838979b8b228acdf&rfr_iscdi=true